Nuclear structure studies @ gas-filled separators P. Kuusiniemi, GSI

3rd Workshop on Recoil Separator for Superheavy Element Chemistry August 27, 2004 Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Gas-filled recoil separators

-simple, "cheap" and clean -good transmission -symmetric reactions -asymmetric ones (e.g. O on Pb ~ 10% for xn) -filling gas & chemistry -He no problem $-H_2$ might be...

Spectroscopy

-examples at the focal plane

Gas-filled recoil separators: Magnetic configuration

Gas-filled recoil separators: RITU

H. Kettunen, Ph.D. thesis

Gas-filled recoil separators: transmission

Generally for asymmetric reactions: -target ⇒ large angular spread of recoils -the thinner the target the better the transmission but: yield ⇔ target thickness.

Gas-filled recoil separators: He vs. H₂

P. Armbruster et al., Proc. of the Int. Conf. on Mass Spectroscopy, Univ. of Tokio Press 1970

4,5+

10

20 30

40

50

E [MeV] -

70

80

90

100

Fig 10 Magnetic field strength to hold light and heavy fission products on a radius of curvature of $\rho = 200$ cm. The independence of the B ρ -values from the energy is fulfilled best in the minima of the curves.

ER(\gamma) - \alpha(\gamma) - ... spectroscopy

SHIP example: ^{216g,m}Th

^{216g,m}Th decay schemes

In-beam Kohno et al. Phys. Rev. C 33, 392 (1986)

²¹⁶Th level scheme

Phys. Rev. Lett. 87, 072501 (2001)

SHIP example 2: 214,216 Ac (12C + 209Bi)

Fig. 2: γ -rays observed in coincidence with α -decays of ²¹⁴Ac (a) and ²¹⁶Ac (b). γ -rays assigned to the decay of ²¹⁴Ac measured at 9.1 AMeV and ²¹⁶Ac at 7.1 AMeV are denoted by * and o, respectively. c) α - γ -coincidences observed in α -decay of ²¹⁶Ac (the scatter plot shows \approx 5% of total data). d) Projection of all α - γ -coincidences on the γ -energy axis.

^{214,216}Ac decay schemes

-towards SHEs level densities are increasing \Rightarrow IC becomes dominating \Rightarrow summing effects (α + e⁻) $\Rightarrow \alpha$ - γ - and/or α - e⁻ - coincidences needed

Conclusions

Gas-filled separators

+simple, cheap and clean +high efficiency +short \Rightarrow short flight times \Rightarrow short living nuclei&isomers -Bp, e.g. new elements?

To compare, e.g. SHIP

+velocity filter with high efficiency ⇒ nice feature for new elements
+UNILAC provides pulsed beams with very high intensities ⇒ RDT?
+superb in (decay) studies at the focal plane
-transmission for very asymmetric reactions? ⇐ UNILAC
-length ⇒ flight time ⇒ short living nuclei&isomers? ⇐ UNILAC

The SHIP group

GSI:

The collaboration

JINR-FLNR Dubna, Russia:

A.G. Popeko A.V. Yeremin

University Bratislava, Slovakia

Š. Šaro S. Antalic (Ph.D. student) B. Streicher (Ph.D. student)

University Jyväskylä, Finland:

M. Leino J. Uusitalo

S. Hofmann F.P. Heßberger P. K. R. Mann D. Ackermann (Univ. Mainz) B. Sulignano (Ph.D. student) G. Münzenberg (Univ. Mainz)

B. Lommel (targetlab) B. Kindler (targetlab)

H.-G. Burkhard (mechanics) H.-J. Schött (elektronics)