

Scientific Opportunities and Technical Challenges

Ch.E. Düllmann (LBNL & UCB)

for the LBNL heavy element group

Presented on the 3rd Workshop on Recoil Separator for Superheavy Element Chemistry, TASCA04, August 27, 2004, GSI, Darmstadt, Germany

Acknowledgments

We thank the LBNL 88" machine shop staff for the great efforts in building much of the equipment.

Stable and reliable beams delivered by the 88" operators and ion-source staff is gratefully acknowledged.

These studies were financially supported by the Swiss National Science Foundation and the U.S. Department of Energy.

Outline

Introduction

Experimental setup at LBNL Some recent chemistry results **New scientific opportunities Isotopes for TAN chemistry @ BGS/TASCA** Production & delivery to chemistry **Technical challenges** (or: how to build a better RTC)

Summary / Outlook

Present: TAN gas phase chemistry Elements 104 (Rf) - 108 (Hs): RfBr Simple inorganic molecules: DbOCl₃ (Oxy)halides, oxides, hydroxides BhO,CI Plan & first attempts 112/114: 174 112 **Elemental state** →This is a very limited set of chemical systems compared to lighter elements! Main problems: -Plasma caused by intense heavy-ion beam; -high temperatures to release radionuclides from C-aerosol particles used in gas-jet transport

Pre-separation in BGS: No beam!

Pre-separation in BGS: No beam!

Berkeley Gas-filled Separator / Recoil Transfer Chamber

-

-171

RTC Window Support Grid

Retractable Degrader Foils

æ,

EVR's

"Detector on a Stick" (8 Strips, Position Sensitive)

The device: **BGS/RTC**

The device: RTC

Current PRELIMINARY results

The best route to the "Chemistry TAN Isotopes"

Highest cross sections for a given element: Cold fusion with Pb/Bi targets.

 \Rightarrow Too short-lived (neutron-poor)

Longer-lived ones are accessible in asymmetric reactions. "Best" target traditionally: ²⁴⁸Cm

⇒ Too slow recoils

Lightest target yielding these isotopes is 244Pu.

 $\Rightarrow \sigma$ is probably again lower, but their recoil energies are higher than with ²⁴⁸Cm:

²⁴⁸Cm(¹⁸O,5n)^{261m}Rf vs. ²⁴⁴Pu(²²Ne,5n)^{261m}Rf: **1.5x**

At which energies are the recoils produced?

Assuming beam energies that correspond to σ_{max} in HIVAP (Db-Hs) or experimental data (Rf; 112; 114)

dE/dx of ions of mass 256 with 10 MeV in He gas

Ζ

Recoil range of 8-MeV mass 256 ions in Mylar

Maximum allowable pressure on Mylar

Mylar Thickness [µm]

These numbers are for our 80%-transparency honeycomb support; the accuracy is limited, but it should give some feeling for what will be possible. Suggestions for better materials and and support designs are highly welcome!

Summary / Outlook

Preseparated isotopes are available @ BGS

- Beam-free environment in RTC opens up new possibilities for gas-phase chemistry.
- First results with Zr and Hf are encouraging.
- ²⁴⁴Pu is probably a good target to study Rf-Hs.
- Problem: Recoils are slow, their ranges in Mylar are not known, but they are short.
- RTC window design and material need to be (and can be!) improved.

Energy loss of recoils in Mylar

Pulse height defect corrected according to Moulton et al. NIM 157 (1978) 325