

Electrochemical Deposition -A Tool for Superheavy Element Chemistry?

Holger Hummrich, Ulrich Rieth, Jens Volker Kratz University of Mainz

3rd Workshop on Recoil Separator for Superheavy Element Chemistry August 27, 2004, GSI, Darmstadt, Germany

Why use Electrochemical Deposition?

- Nuclide separation and sample preparation for α-spectrometry in one step
- Electrochemical deposition of element 114 might be possible

$$\mathsf{E} = \mathsf{E}^{\mathsf{o}} + \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \, \mathsf{a}_{\mathsf{o}}$$

Deposition of A on A \rightarrow Deposition at Nernst potential

$$\begin{array}{c|c} \hline A \\ \hline B \\ \hline D \\ \hline B \\ \hline D \\ \hline D$$

Deposition of A on B \rightarrow underpotential deposition (UPD)

E_{50%} values for different metal combinations: B. Eichler, J.V. Kratz, Radiochim. Acta 88, 475 (2000)

Experimental Setup

- > Experiments with ²¹²Pb, $T_{1/2}$ =10,6h (Pb: homolog of element 114)
- Determination of UPD potentials
- Investigation of electrochemical deposition kinetics

Deposition of ²¹²Pb on Pd, Ag and Cu from 0.1 M HClO₄. Electrolyte Volume V=1mL, Electrode Area A=1cm², stirring at 600rpm. The tangents show the E_{crit} values.

Fast Electrodeposition Cell

 $t_{50\%}$ = 5s for the deposition of Pb on Pd from 0.1M HClO₄, A = 2cm² and V = 400µl at 90°. Stirring with high volume magnetic stirrer at 1400rpm.

Interferences from Polonium Isotopes

Po-isotopes in SHE chemistry

Isotope	T _{1/2}	E_{α} [MeV]
^{211m} Po	25,2 s	7,28; 8,88
^{211g} Po	516 ms	7,45
^{212m} Po	45,1 s	11,65
^{212g} Po	0,3 µs	8,78
²¹³ Po	4,2 µs	8,38
²¹⁴ Po	164 µs	7,69
²¹⁵ Po	1,8 ms	7,39
²¹⁶ Po	145 ms	6,78
²¹⁷ Po	1,5 s	6,54
²¹⁸ Po	186 s	6,00

- Rn isotopes partially removed in a degasser, but Po decay products may reach the electrodeposition unit
- Po is electrodeposited spontaneously*
- Presumably, a gas-filled preseparator will be mandatory

*U. Rieth, Institut für Kernchemie, University of Mainz, Annual Report 2002

7

Coupling Gas Jet - Electrodeposition Cell

Summary and Outlook

Present:

- E_{crit}-values for the deposition of Pb from different electrolytic systems were determined
- A fast electrodeposition cell was developed: t_{50%} = 5s for the deposition of Pb on Pd from 0.1 M HClO₄ at 90 °C

Future:

- Construction of the mini degasser
- Coupling of gas-jet, degasser and electrodeposition cell, test in a ¹¹⁰Pd(⁸⁰Kr,5n)¹⁸⁵Pb beamtime at GSI
- Coupling with gas-filled separator and development of a fully automated electrodeposition and detection device