Status of the new separator project at JYFL

Matti Leino

University of Jyväskylä Department of Physics

Background

Gas-filled separator RITU in operation since 1993

Heavy workload on RITU 3000 h of beam time in 1997 (90 papers in refereed journals)

Having two recoil separators would

- reduce the need for switching between detector systems
- Possibly open up new fields of research at JYFL
 (Most notably in the region A ~ 100)

Starting point

RITU works very well in the region of the heavy and the heaviest elements; Keep it as is

Alternatives for a second separator:

- a second RITU
- Gas-filled separator for the medium-mass region (EMIS-14 T. Enqvist *et al.* NIM B **204**, 138 (2003)
- A vacuum device

Second gas-filled separator for JYFL (not realized)

$D_h Q_v Q_h$	
radius	1.85 m
bending angle	50°
field index	~ 3
gap	130 mm
dispersion	15
mm/%	
length	4.8 m

Separation in (x,x') plane between beam and evaporation residues (after the dipole magnet)

a) RITU

b) new separator with $B_n = 0$

c) new separator with $B_n = -4$

Difference in Bp 4%

Vacuum device - benefits

- Possibility to go down in mass: A ~ 80-100, Z ~ N (Enthusiastic response from the nuclear structure community)
- Local support from the IGISOL community
- Possibility to introduce new know-how to JYFL

Main characteristics

- Mass resolving power significantly better than 100 in the A = 100 region
- Angular acceptance 5-10 msr
- Energy acceptance ±7%
- Possibility to do RDT with Ge arrays
- Moderate length, cost

Design

Many alternatives Our starting point: Suggestion from Dubna - QQQEM

Main characteristics:		Magnetic dipole	
		radius	1.50 m
Deflector		Defl. angle	45°
radius	4.00 m	Entr. angle	8°
gap	12 cm	Exit angle	8°
Max V	±200 kV	EFB radii	2.80 m
		gap	10 cm
		Max B	1.0 T

Further characteristics

Angular acceptancey =Angular acceptancex =Energy acceptance ± 7 Momentum dispersion10Mass resolving power25Beam spot sizex =v =

y $\pm 30 \text{ mrad}$ x $\pm 30 \text{ mrad}$ $\pm 7\%$ 10 mm/% 250 x = $\pm 1 \text{ mm}$ y = $\pm 1 \text{ mm}$

3 charge states accepted

Energy focus

$$\delta_{\rm E} = 0, \pm 3.5\%, \pm 7\%$$

Trajectories

Mass resolving power

Manpower

Local group

- C. Scholey
- J. Uusitalo
- (P. Kuusiniemi)
- J. Sarén
- M. Leino
- Gamma and RITU groups

Additional help: GSI, ANL, JINR, U.K. institutes and universities

Time and money

Construction period: 2004-2006

100 k€available to get started in 2004

150 k∉y available from JYFL Accelerator Laboratory's budget in 2005-2006

External funding additional