Envisaged first TASCA configurations

A. Semchenkov^{1,2}, E. Jäger², M. Schädel², E. Schimpf², A. Türler¹, A. Yakushev¹ ¹TU München, ²GSI Darmstadt

Present Aims

- High efficiency separator for Superheavy elements research
- High transmission
- Relatively high background reduction
- Using existing NASE components
- Price of separator should be low

Darmstadt

Topics of Discussion

- Charge states and magnetic rigidity calculations in Helium gas
- TRANSPORT calculations of possible TASCA magnetic schemes

Charge state calculations

Yu.Ts.Oganessian (1990): q = (3.3*10⁻⁷) * v * Z^{1/3} - 1.18, v * Z^{1/3} > 2*10⁷

K.Gregorich (2003): $q = 0.52 * (v / v_0)^{1.2} * Z^{1/3}$

H.Kudo (2003): q = 0.625 * (v / v_0) * Z^{1/3}, 8 ≤ (v / v_0) * Z^{1/3}≤ 20, Z ≥ 82

5 İ Darmstadt

TU München

Magnetic rigidity calculations

TU München

Darmstadt

Input parameters for TRANSPORT calculations

The studied reaction is:

- ⁴⁸Ca(238.8 MeV) + ²³⁸U(0.5 mg/cm²) -> ²⁸⁶112 -> ²⁸³112 + 3n
- 54% of ²⁸³112 will appear within ±40 mrad (according to simulations of K.E.Gregorich)

Input parameters:

Darmstadt

- Horizontal and vertical beam size ± 2.5 mm
- Horizontal and vertical inclination of the beam \pm 40 mrad

München

TASCA

- Momentum dispersion \pm 5% (92% of all ²⁸³112)
- Magnetic rigidity 2.24 T*m

Possible structures of TASCA

DQ_hQ_v - configuration

TASCA

Summary data at the exit focus

TU München

Darmstadt

Resume for near future:

The DQ_hQ_v (case 1) - especially with square vacuum chamber for quads - and the $Q_vDQ_hQ_v$ -configuration (case 4) with normal quads is most useful and effective:

- highest transmission
- lowest background
- high dispersion
- most components exists:

Darmstadt

- Quad1, Dipole, Quad2, Quad3
- Vacuum chambers for all magnetic elements and two detector chambers
- Power supplies for Quad2 and Quad3

Future plans:

- Monte-Carlo simulations of transmission with higher accuracy
- Next year constructing TASCA separator based on existing components (DQQ configuration if new calculations agree with the present ones)
- Following two years testing TASCA separator

