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But First:  What about the gas?

Then:        Expected cross sections for Rf-Hs with 244Pu targets

And:         Measurements of EVR ranges in MYLAR

Finally:    What (not) to do with TASCA



Principal Investigators:
Heino Nitsche (UCB Chemistry Faculty, group leader)

Ken Gregorich

Staff:
Ralf Sudowe
Chris Düllmann

Robert Eichler (visiting staff scientist)

Postdoc
Cody Folden (in his “spare time”)

Graduate Students 
Irena Dragojevic (1st yr; heavy elements)

Mitch Andre Garcia (1st yr; gas phase chemistry)
Jacklyn Gates (1st yr; hot fusion; Db extraction chemistry) 

Sarah Nelson (2nd yr; cold fusion) 

Collaborators 
OSU, PSI/Bern, GSI, TUM, ANL . . .  

The LBNL Heavy Element Group
(apologies for not showing this on Monday)



Understanding Magnetic Rigidity in He Gas
Back to basics . . . 

Back in 1948, Neils

Bohr suggested a

q = vZ1/3 dependence

This fit shows much

scatter.  Deviations are

+/- 10%. Can this be 

understood in terms

of the electronic shell

structure of the stripped

ions?

Strong deviations at low

velocities due to the 
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Understanding Magnetic Rigidity in He Gas
Ghiorso and Armbruster say look at electronic shells . . .
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What is the 283112 magnetic rigidity?
Applying a sinusoidal correction . . .

Semi-empirical

understanding of

why this works:

If the stripped ion is in an 

f-orbital, the most loosely 

bound electrons are inner 

electrons, and are less 

available for stripping by 

the gas, giving a lower q.

If the stripped ion is in a

p-orbital, the most loosely

bound electrons are outer

electrons, and are readily

available for stripping by

the gas, giving a higher q.

But problems arise at low velocities!
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Sinusoidal Corrections to Average Charge in He
Comparison of experimental and calculated
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Understanding Magnetic Rigidity in He Gas
Iodine and uranium data show a break below v = 1.6v0

v0 2v0 v0 2v0

The red lines trend toward q = 2.5 at v = 0 because the first  of ionization potential of He is 25 eV. 

This is usually between the second and third ionization potentials of heavy elements.



Simplest assumption:

Charge changes linearly

Between v/v0 = 1.6 and 

q = 2.5 at v=0
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Understanding Magnetic Rigidity in He Gas
After applyting a slow velocity correction . . .



Plot and equations: Oganessian et al.,

PRC 64, 064309 (2001), Z. Phys. D 21,S357 (1991)

q1991(Z=116)

q1991(Z=102)

q1991(Z=88)

q2001

Understanding Magnetic Rigidity in H2 Gas
Fits used in the DGFRS work . . .



Understanding Magnetic Rigidity in H2 Gas
Iodine and uranium are linear to below v = 1.2v0

v0 2v0 v0 2v0



Understanding Magnetic Rigidity in H2 Gas
Simple vZ1/3fit . . .
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Understanding Magnetic Rigidity in H2 Gas
Reduced shell effect amplitude gives excellent fit . . .
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Asymmetric Reactions in He Gas
Iodine and uranium data show a break below v = 1.6v0

v0 2v0 v0 2v0



Separation of transfer products in He
He gas presents problems for asymmetric reactions . . .
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Understanding Magnetic Rigidity in H2 Gas
Iodine and uranium are linear almost down to v = 1.0v0

v0 2v0 v0 2v0



Separation of transfer products in H2
He should be better for asymmetric reactions . . .
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Range Measurements in MYLAR 

MYLAR range experiments:
natGe(18O,xn)85Zr
124Sn(50Ti,5n)169Hf
176Yb(37Cl,xn)213-xFr
208Pb(37Cl,3n)245Es
238U(22Ne,xn)260-xNo
208Pb(50Ti,xn)258-xRf

Conclusions:

SRIM2003 does a good job 

of predicting ranges.

Moulton et al. overestimate

pulse-height defects for

heavy elements in Si detectors



First Test . . . α-Particles 

General operation can be tested by focusing α-particles through TASCA

Bρ of 244Cm α-particles is only 0.347 Tm, so magnetic fields may not have expected shapes

This can provide an initial measurement of the angular acceptance

A small fraction of decay will be He1+ with Br = 0.694 Tm

BGS first test with α-particles in Fall 1998:  

Noise from the SCR magnet power supplies was larger than α-pulses

Noise problem was solved with induction coils in series with M2 current, but . . .

Install Hall probe in the dipole, and always record the value

To detect histeresis and unexpected magnetic field changes



Second Test . . . Real Beam! 
Beamstop design

First test in the BGS was 197Au(22Ne,xn)219-xAc

Cross sections are huge, α-branches are large

BGS had a simple beamstop . . . scattered beam dominated spectrum

Fins were added to the beamstop, reducing the background rate

Fins were enlarged to full vertical height in second beamstop iteration

While on the subject of the beamstop:

The beam should only hit the targets and tantalum (collimator and beamstop)

Neutron and gamma rates in the BGS cave are quite low

Even with 1 pµA of beam, large-volume Ge detector sees only 2000 cps (singly scattered γs)

MWAC
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Third Test . . . High Intensity Beam 

208Pb(40Ar,3n)245Es used to test high-beam intensity operation

High-Intensity 40Ar beams should be readily available at GSI

for tests of target cooling and durability

Stringent test of beam suppression

Test of EVR-α correlation techniques

High quality 208Pb targets are readily available at GSI

TASCA should have the capability to use SHIP target wheels for cold-fusion studies



The Ultimate Test . . . 206Pb(48Ca,2n)252No 
and the Everyday Test

Test of EVR-α, EVR-SF, α-α, EVR-escape, α-escsape correlation search techniques 

Measurement of EVR-α, EVR-SF, α-α, EVR-escape, α-escsape position resolution

Spontaneous fission energy calibration without contaminating detector

Accelerator energy matching (excitation function has been published from all separators)

Separator efficiency test (cross section is well known)

High magnetic rigidity separator test (Bρ is similar to most heavy element reactions)

The Everyday Test
A target can be chosen for each beam used in heavy element experiments that produces large 

amounts of α-decaying nuclides.

Use α-decay for these tests (EVRs can be misleading because of αxn exit channels)

Test for unexpected shifts in magnetic rigidity (always compare to past runs)

Confirmation that the UNILAC delivers the requested beam

Use for testing of data acquisition and any auxiliary detectors



Recoil Transfer Chamber Issues 

Wire support grid with square holes led to catastrophic failures

Solid support grid with round holes was uneventful during the “test to destruction”

Retractable “detector-on-a-stik” can hide behind a “wall”

Retractable degrader foils 

degrader foils to adjust EVR

energy entering RTC window

“Detector Protector” . . . 

fast RF shutoff activated     

when Dipole field drops or 

when rate in detector 

exceeds 104 Hz

Knudsen formula for 

characteristic charge 

exchange length is correct!

Distance between charge 

exchange collisions for 

beam velocities is ~1 meter



Other Essentials 

Monitor gas purity with a residual gas analyzer . . . impurities can shift the Bρ distribution

Continuous monitoring of Rutherford-scattered beam particles is essential

X1 experience confirms that knowledge of actual beam intensity is difficult

Rutherford rate gives direct measure of luminocity (beam intensity x target thickness)

Calibration of magnetic rigidity with low-intensity beam (40Ar9+ and 40Ar17+)

We used a phosphor mounted in the detector position

Zero dispersion mode may be unuseable

Transfer products will reach detector (or RTC)

Use of a punchthrough detector

1-MeV punchthrough events (evaporation of protons from PLF in beamstop)

2-MeV punchthrough events (evaporation of protons from TLF in beamstop)

8-MeV punchthrough events (forward scattering of He gas)

Know your data acquisition . . . DAQ errors cam mimic heavy element events

On-line DAQ program should log module readout errors

Temporary failure of detector components (MWPC sparking) 



Conclusion

TASCA will provide a “beam-free” gas-jet for heavy element studies

Interfering transfer products will be suppresed by a large factor

Final word to the TASCA group . . . Have fun with your new toy!


