Chemistry planned @ GARIS

Cyclotron Center, RIKEN Hiromitsu Haba

- **1. Introduction**
- 2. Gas-jet chamber coupled to GARIS
- 3. Search for SHE nuclides for chemical experiments
- 4. Future plans

1. Introduction

RIKEN Linear Accelerator (RILAC) + Gas-filled Recoil Separator (GARIS)

Operation principle and performance of GARIS \Rightarrow TASCA04 by D. Kaji Syntheses of the heaviest SHEs \Rightarrow TASCA04 by K. Morimoto ${}^{208}Pb({}^{64}Ni,n){}^{271}Ds: 14 \text{ atoms}$ ${}^{209}Bi({}^{64}Ni,n){}^{272}Rg: 14 \text{ atoms}$ ${}^{208}Pb({}^{70}Zn,n){}^{277}112: 2 \text{ atoms}$ ${}^{209}Bi({}^{70}Zn,n){}^{278}113: 1 \text{ atom (ongoing)}$

Contributions to TASCA community

Development of a chemistry setup coupled to GARIS

RIKEN Gas-filled Recoil Separator, GARIS

D1	
Bending angle	45 degree
Pole gap	150 mm
Radius of central ray	1200 mm
Maximum field	1.54 T

Q1, Q2	
Pole length	500 mm
Bore radius	150 mm
Maximum field gradient	5.2 T/m

D2

Bending angle	10 degree
Pole gap	160 mm
Pole length	400 mm
Maximum Field	1.04 T

Magnification	Х	-0.76	
	Y	-1.99	
Dispersion		0.97 cm/%	
Total length		5760 mm	
Acceptance	Δθ	±68 mrad	
	$\Delta \Phi$	\pm 57 mrad	
	ΔΩ	12.2 msr	

$\frac{^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}\text{113} + n}{^{278}\text{113} + n}$

The 1st experiment [Morita et al.: JPSJ 73, 2593 (2004).]

The 2nd experiment

Exp. period	Jan. 20, 2005 – Nov. 24, 2005 (ongoing)
Beam intensity	3.06 x 10 ¹² /s (0.51 p μ A)
Irradiation time	61 days (– Sep. 21)
Total dose	1.6 x 10 ¹⁹ (– Sep. 21)

2. Gas-jet chamber coupled to GARIS

(i) Vacuum window

Focal plane of GARIS: PSD (60 x 60 mm²) \Rightarrow Mylar vacuum window of Φ 60 mm

Mylar foil: 1.1, 2.4, 2.6, 3.1, and 5.6

 μ **m**

Mylar foils down to 2.4 μ m are available at 100 kPa using all types of support grids!

Honeycomb

<u>Circle</u>

(ii) Gas-jet chamber

(a) Four gas-jet inlets (Φ 4 mm) and one outlet (Φ 1.6 mm)

(b) Inner wall: chemically inert Teflon or Diflon

For a case to directly introduce chemical reagents into the chamber

(c) Variable distance to gas-jet outlet (20, 40, 60, and 80 mm)

3. Search for SHE nuclides for chemical experiments

(i) ²³²Th + ⁴⁰Ar reaction

Intense ⁴⁰Ar beam from RILAC (> 5 p μ A)

Test for the future studies with actinide targets: target cooling, background? Production of ²⁶⁵Sg and ²⁶⁹Hs without ²⁴⁸Cm target, large recoil energies ²⁶⁵Sg (7.9 s): ²⁴⁸Cm(²²Ne,5*n*) (10 MeV) \Rightarrow ²³²Th(⁴⁰Ar, α 3*n*) (30 MeV) ²⁶⁹Hs (14 s): ²⁴⁸Cm(²⁶Mg,5*n*) (14 MeV) \Rightarrow ²³²Th(⁴⁰Ar,3*n*) (28 MeV)

(ii) Preparation of Th target

Electrodeposition

 $\Rightarrow 316 \ \mu \text{ g/cm}^2 \text{ Th on 2.8 } \mu \text{ m Ti}$ (a) 2.7 mg of Th in 5 \ \mu L of 0.01 M HNO₃ + 10 mL 2-propanol (b) 500 V x 6 mA/cm² for 20 min Deposition area: 7.85 cm² Efficiency: > 90%

(c) Sinter at 350°C for 20 min \Rightarrow ThO₂

(iii) Test irradiation of the ThO₂ target

198.9 MeV (May 5, 2005): 232 Th(40 Ar,4*n*) 268 Hs 207.3 MeV (July 11, 2005): 232 Th(40 Ar,5*n*) 267 Hs and 232 Th(40 Ar, α 3*n*) 265 Sg

Experimental conditions

	May, 2005	July, 2005
Initial energy (MeV)	214.48	222.51
Energy at target center (MeV)	198.9	207.3
Total beam dose	3.0 x 10 ¹⁷	1.2 x 10 ¹⁸
Ave. beam intensity (pµA)	1.04	0.906
Irradiation (hours)	12.8	57.2
Target thickness (µg/cm ²)	315.9	315.9
Magnetic rigidity (Tm)	2.03	2.04
He pressure (Pa)	88	88
Total C.R. (cps/pµA)	221	236

Preliminary results

No damages were found in the target after the irradiation (~2 p μ A). No SF events correlated to ER

No known α - α correlations

Upper limit of cross section (1 σ):

 265 Sg: ~10 s, 8.80 MeV ⇒ 261 Rf: 65 s, 8.28 MeV ⇒ 257 No: 25 s, 8.22–8.32MeV

6.4 pb at 207.3 MeV

4. Future plans

(i) On-line experiment (Nov. 2005)

 $^{nat}Dy + {}^{40}Ar \rightarrow Po \text{ isotopes}$ ${}^{169}Tm + {}^{40}Ar \rightarrow Fr \text{ isotopes}$

(ii) ²³²Th + ⁴⁰Ar

⁴⁰Ar(²³²Th, α 3*n*)²⁶⁵Sg ⁴⁰Ar(²³²Th,3*n*)²⁶⁹Hs

(iii) ²³⁸U(⁴⁸Ca,3*n*)²⁸³112

Excitation function, decay properties?

Gas-jet chamber He gas (+ aerosol) SHE atoms from GARIS **RIKEN MANON** Rotating wheel system for measurements of α and SF decays **Mylar catcher foil** Si PIN Photodiodes

1 μ m, 20 mm i.d.

5. Summary

<u>Chemistry setup coupled to GARIS</u>

- Development of a gas-jet chamber coupled to GARIS
- Investigation of the ²³²Th + ⁴⁰Ar reaction

Future plans

- Test experiments of the gas-jet system (Nov. 2005) $^{nat}Dy + {}^{40}Ar \rightarrow Po \text{ isotopes}, {}^{169}Tm + {}^{40}Ar \rightarrow Fr \text{ isotopes}$
- ⁴⁰Ar(²³²Th, α 3n)²⁶⁵Sg and ⁴⁰Ar(²³²Th, 3n)²⁶⁹Hs (Nov.
 2005)
- ⁴⁸Ca(²³⁸U,3*n*)²⁸³112 (to be determined)

Acknowledgements

T. Akiyama, S. Enomoto, D. Kaji, K. Morimoto, K. Morita, and Y. Yano

Osaka University

A. Shinohara and T. Takabe

Tohoku University

N. Sato

Y. Nagame

