<u>TASCA</u> separator - <u>Trans</u> <u>Actinide</u> <u>Separator and</u> <u>Chemistry</u> <u>Apparatus</u>

🖬 Darmstadt 🛛 📶 TU München

Comparison of separators

Separator	SASSY II	DGFRS	HECK	GARIS	RITU	BGS
Configuration	$D_v Q_h Q_v$	DQ _h Q _v	DQ _h Q _v	DQ _h Q _v	$Q_v DQ_h Q_v$	$Q_v D_h D$
Solid angle, msr	7	10	10	22	10	45
Bend. angle, deg	23	23	30	45	25	70
Bro, max, Tm	2.2	3.1	2.2	1.85	2.2	2.5
Length, m	4.0	4.3	3.8	4.8	4.7	4.7
Dispersion, cm/%	0.67	0.63	0.61	0.78	1.00	2.00

old NASE (HECK) sep.

IEEEII Darmstadt

TU München

working **RITU** separator

Problems to have high transmision

connected to the initial beam:

- Size of the beam
- Energy and Angular spread of the beam
- Energy and Angular spread of the beam in the target
 connected to the products of reactions:
- Energy and angular spread of products in the target
- Energy and angular straggling of products in the target
- Energy and angular straggling of products in the gas
- Charge value and spread of charge states in the gas

connected to separator:

Ion – optical scheme

armstadt

- Vertical and horizontal acceptance of Dipole magnet
- Vertical and horizontal acceptance of Quadrupole magnets

nchen

Input parameters for TRANSPORT and GICO calculations

The studied test reaction is:

- ⁴⁸Ca(235 MeV) + ²³⁸U(0.5 mg/cm²) -> ²⁸⁶112 -> ²⁸³112 + 3n
- 54% of ²⁸³112 will appear within ±40 mrad (according to simulations of K.E.Gregorich)

Input parameters:

armstadt

- Horizontal and vertical beam size ± 2.5 mm
- Horizontal and vertical angle of the products ± 40 mrad

ünchen

- Momentum dispersion ± 5% (92% of all ²⁸³112)
- Magnetic rigidity 2.24 T*m

Summary data at the exit focus

Final decision: DQQ - configuration

Where are the problems and how to solve them:

Magnet vacuum chamber – increase vertical and horizontal aperture solution – calculate the magnet to skip shims (+10% in vertical aperture), new large vacuum chamber in vert. and horiz. sizes + RITU experience - large size chamber

Quads vacuum chamber - increase vertical and horizontal aperture. It was two options cheap square chamber and expensive butterfly-like vacuum chamber.

New more powerful power supply for Bending magnet.

TU München

TASCA magnet

KOMPOT 3D mesh (number of calculated points 128*63*59 = 475776)

Darmstadt

KOMPOT computation model

TU München

The KOMPOT magnetic field distribution Vertical Section Horizontal Section

Distribution of B (in kGauss). Existing pole. I=700 A. B_{max}=1.635T=16.35kGauss

TASCA magnet (shims variations).

lünchen

Distribution of Induction in the central vertical section. Existing pole with shims. I = 700 A. $B_{\text{max}} = 1.635 \text{ T} =$ =16.35 kGauss

Existing pole without shims. I = 700 A. $B_{\text{max}} = 1.643 \text{ T} =$ = 16.43 kGauss

Existing pole with anti-shims.

Darmstadt

TASCA

Magnetic field distributions in the central crossection of TASCA magnet

Dipole Magnet vacuum chamber design

I Darmstadt

U München

Quadrupole vacuum chamber design

Darmstadt

FU München

- configuration with new input parameters

Present set-up:

Future TASCA

VARIABLE INPUT PARAMETERS:

x'=60mrad \leftarrow Horiz. ang. accept. \rightarrow x'= 110mrady'=33mrad \leftarrow Vert. ang. accept. \rightarrow y'=x'y'=45mrad \leftarrow Aver. ang. accept. \rightarrow x'y'=65mradSA=6.4 msrSA=6.4 msrSA=SA=13.3msr

RESULTS OF CALCULATIONS:

Γ' = 58% Γ = 52%	 ← Ang. transmis. → ← Total transmis. → 	T' = 72% T = 65%
X = 12 cm	← Horiz. image size →	X = 14 cm
Y = 2.2 cm S = 21 cm ²	← Image area →	r = 2.5 cm S = 27 cm ²

New vacuum chambers (in dipole magnet and butterfly-like one in quads)

→ increase transmission by (minimum) 25%

TU München

DQ_vQ_h - configuration with <u>new input parameters</u>

TU München

Darmstadt

Beam spot size dependence of the 112 transmission

CONCLUSIONS:

- DQQ—configuration is the optimized configuration for TASCA
 most efficient and most universal
- We increased the size of the vacuum chamber in the dipole magnet
- We increased the size of the vacuum chamber in the quadrupoles — butterfly-type with large acceptance
- This increased the transmission of 112 by at least 25%
- The TASCA dipole magnet with new power supply can operate up to magnetic rigidities of 2.5 Tm

What are we have now:

- Dipole magnet and quadrupoles were tested
- Vacuum chambers for all magnets will come this month
- Two detector chambers are in the cave
- All power supplies for Dipole magnet, Q₁ and Q₂
- Vacuum pumps and equipment
- Computers and parts of control system

Our future plans:

- Monte-Carlo simulations of transmission with higher accuracy are still actual
- Current year continue to constructing TASCA separator based on existing components and new vacuum chambers

inchen

- Vacuum system constructing
- Writing Control system

Darmstadt

• Following two years - testing TASCA separator

Recoils beam shape in TASCA

DQ_hQ_vconfiguration

TASCA

DQ_vQ_hconfiguration

Energy distribution of products from a target

The studied reaction is:

Darmstadt

⁴⁸Ca(235 MeV)+²³⁸U(0.5 mg/cm²) -> ²⁸⁶112 -> ²⁸³112 + 3n different target materials

München

Angular straggling of products in the target

The studied test reaction is:

⁴⁸Ca(235 MeV)+²³⁸U(0.5 mg/cm²) -> ²⁸⁶112 -> ²⁸³112 + 3n

beam energy at the target center

Darmstadt

U München

