

Instrumental and Methodical Improvements for Chemistry Experiments at the Berkeley Gas-filled Separator

R. Sudowe, I. Dragojevic, Ch.E. Düllmann, C.M. Folden III, M.A. Garcia, J.M. Gates, K.E. Gregorich, S.L. Nelson and H. Nitsche

> Heavy Element Nuclear & Radiochemistry Group Nuclear Science Division Lawrence Berkeley National Laboratory

Recoil Transfer Chamber

BGS Detector Setup For Chemistry

Recoil Transfer Chamber (RTC)

Aerosol Gas-jet

Inlet

Aerosol Gas-jet Inlet

BGS / RTC Setup For Aerosol Transport

RTC : The Next Generation

BGS / RTC Setup For Gas Chemistry

rrrr

BERKELEY

New Detector-On-A-Stick

- ✓ Allows for nuclide identification by decay correlation while the RTC is in place.
- **Does not work well when bombarded** with 3.4*10¹⁰ atoms of O⁴⁺

- ✓ 32 Position-Sensitive Si Strips
- ☑ 12 cm x 6 cm x 6 cm
- **☑** Covers 6.3% in Bp
- **☑** ~50% Geometric Efficiency

Remember:

Always retract the detector!

Nuclear Reaction Studies for Chemistry

Excitation Function ²⁰⁸Pb(⁵⁰Ti,xn)^{258-x}Rf

Comparison GSI \leftrightarrow LBNL

- Maximum of the excitation function seems to be shifted to slightly higher energies at LBNL. (similar to ⁶⁴Ni+²⁰⁸Pb→²⁷¹Ds)
- Maximum of the LBNL excitation function appears somewhat higher than that of the GSI function.
- Detailed analysis in progress

Recoil Ranges for Rutherfordium EVRs

Mylar Thickness (µm)

Pulse height recorded for Rf recoils passing through different thicknesses of Mylar foil.

Excitation Function ²⁰⁸Pb(⁵¹V,xn)^{259-x}Db

• Maximum cross section for the 1n reaction is ~3-4 times smaller than in the ²⁰⁹Bi(⁵⁰Ti,xn) reaction.

BERKELEY

- Found optimum energy for chemistry experiments to study element 105.
- Detailed data analysis in progress.

Target Development

Rutherfordium:

²⁵⁷**Rf** ($\mathbf{T}_{1/2}$ = **4.0 s**) 0.5 Atoms/min behind BGS Reaction: ²⁰⁸Pb(⁵⁰Ti, 1n)²⁵⁷Rf, $\boldsymbol{\sigma} \approx 10$ nb Used in SISAK chemistry experiments.

Dubnium isotopes:

²⁵⁸Db ($T_{\frac{1}{2}}$ = 4.4 s) Reaction: ²⁰⁹Bi(⁵⁰Ti,1n)²⁵⁸Db, $\sigma \approx 3$ nb Used in SISAK detector test experiments.

Heavier elements:

Currently no isotopes with $T_{1/2} > 0.5$ s can be produced and separated with BGS.

New Small Rotating Target Wheel

- Motor has been successfully tested in vacuum.
- Modifications to the BGS beam line are still necessary to accommodate the new target box.
- Fast closing valves need to be installed in the beam line to protect the cyclotron.

- New target chamber has been constructed to accommodate 3.5 inch diameter actinide target wheel.
- Complete target unit can be removed and transferred to a glove box.
- Housing can be water cooled.

uranium with thickness up to 500 μ g/cm² by electroplating.

Preparation of segmented wheel targets of

Plating cell:Made from Teflon (Volume 40 mL)Aluminum base plateRing shaped palladium anode

Successfully able to plate uranium up to a thickness of ~500 μ g/cm² using ~100V.

- **BUT:** Thermal expansion of the foil while heating.
 - Thin Al foils are very fragile and difficult to handle!

What about rare and expensive isotopes?

LAWRENCE BERKELEY NATIONAL LABORATORY

1. Approach: Plating a Whole Wheel

Goal:

2. Approach: Plating Segments

- Electroplating cell for small segments has been constructed from Teflon.
- Backing foil (Al or Ti) is attached to the frame with heat resistant glue.
- Electrode geometry needs to be optimized and target homogeneity needs to be evaluated.

But:

Al foil shows wrinkles when heated!

Ti may be a better choice.

An Alternative to Electroplating?

Polymer Assisted Deposition (PDA)

Method is used to generate uniform thin metal films in microcircuit fabrication and semiconductor industry.

- Metal ion is coordinated to a polymer, e.g. polyethylenimine, in solution.
- Solution is spin coated onto a substrate until the desired thickness is reached.
- Substrate is baked in an oven to remove the polymer and leave the metal oxide.

rrrr