
Instrumental and Methodical Improvements 

for Chemistry Experiments 

at the Berkeley Gas-filled Separator

R. Sudowe,  I. Dragojevic, Ch.E. Düllmann, C.M. Folden III, 

M.A. Garcia, J.M. Gates, K.E. Gregorich, S.L. Nelson

and H. Nitsche

Heavy Element Nuclear & Radiochemistry Group

Nuclear Science Division

Lawrence Berkeley National Laboratory



Recoil Transfer Chamber



Retractable

Degrader Foils

"Detector on a Stick" 

(16 Strips, Position 

Sensitive)

RTC Window

Support Grid

BGS Detector Setup For Chemistry



Recoil Transfer Chamber (RTC)

Aerosol Gas-jet

Inlet

Aerosol Gas-jet

Inlet

Gas-jet Outlet

Capillary

Plunger to adjust

RTC depth
P-I-N Diode



BGS / RTC Setup For Aerosol Transport
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���� 32 Position-Sensitive Si Strips

���� 12 cm x 6 cm x 6 cm

���� Covers 6.3% in Bρ

���� ~50% Geometric Efficiency

New Detector-On-A-Stick

���� Allows for nuclide identification by 

decay correlation while the RTC is

in place. 

���� Does not work well when bombarded 

with 3.4*1010 atoms of O4+

Remember: 

Always retract the 
detector!



Nuclear Reaction Studies for Chemistry



Comparison GSI ↔ LBNL

• Maximum of the excitation function

seems to be shifted to slightly higher

energies at LBNL.

(similar to 64Ni+208Pb→271Ds)

• Maximum of the LBNL excitation

function appears somewhat higher

than that of the GSI function.

• Detailed analysis in progress
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Recoil Ranges for Rutherfordium EVRs
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E after BGS: ~40 MeV.

→→→→ PHD overestimated

Pulse height recorded for Rf recoils passing through different

thicknesses of Mylar foil.



Excitation Function 208Pb(51V,xn)259-xDb
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• Maximum cross section for the 
1n reaction is ~3-4 times smaller 
than in the 209Bi(50Ti,xn) 
reaction.

• Found optimum energy for 
chemistry experiments to study 
element 105.

• Detailed data analysis in 
progress.
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Target Development



TA Nuclides Currently Available

Rutherfordium:

257Rf (T½= 4.0 s) 0.5 Atoms/min behind BGS 

Reaction: 208Pb(50Ti, 1n)257Rf, σ ≈ 10 nb

Used in SISAK chemistry experiments.

Dubnium isotopes:

258Db (T½= 4.4 s) Reaction: 209Bi(50Ti,1n)258Db, σ ≈ 3 nb

Used in SISAK detector test experiments.

Heavier elements:

Currently no isotopes with T½ > 0.5 s can be produced and 

separated with BGS.
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New Small Rotating Target Wheel

• New target chamber has been 
constructed to accommodate 3.5 inch 
diameter actinide target wheel.

• Complete target unit can be removed and 
transferred to a glove box.

• Housing can be water cooled.

• Motor has been successfully tested in 
vacuum.

• Modifications to the BGS beam line are 
still necessary  to accommodate the new 
target box.

• Fast closing valves need to be installed 
in the beam line to protect the cyclotron.



1. Approach: Plating a Whole Wheel

Goal: Preparation of segmented wheel targets of 
uranium with thickness up to 500 µg/cm2

by electroplating.

Plating cell: Made from Teflon (Volume 40 mL)

Aluminum base plate

Ring shaped palladium anode

Successfully able to plate uranium up to a thickness 
of ~500 µg/cm2 using ~100V.

BUT: Thermal expansion of the foil while heating.

Thin Al foils are very fragile and difficult to 
handle!

What about rare and expensive isotopes?



2. Approach: Plating Segments

• Electroplating cell for small segments has been 
constructed from Teflon.

• Backing foil (Al or Ti) is attached to the frame 
with heat resistant glue.

• Electrode geometry needs to be optimized and 
target homogeneity needs to be evaluated.

But: 

Al foil shows wrinkles 
when heated!

Ti may be a better 
choice.



An Alternative to Electroplating?

Polymer Assisted Deposition (PDA) 

Method is used to generate uniform thin metal films in microcircuit 
fabrication and semiconductor industry.

• Metal ion is coordinated to a polymer,
e.g. polyethylenimine, in solution.

• Solution is spin coated onto a substrate 
until the desired thickness is reached.

• Substrate is baked in an oven to remove the 
polymer and leave the metal oxide.
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First tests with Polmyer Assisted Deposition
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• Solution containing Eu coordinated to 
a carboxylated polyethylenimine was 
placed onto aluminum foil.

• Solution was mechanically spread.

• Foil was baked in the oven.


