

<u>Isothermal VA</u>cuum <u>Chromatography</u> (IVAC) @TASCA

R. Eichler for the PSI/University Bern Heavy Elements group

Why Vacuum?

dimer formation (non metals) $\leftarrow \rightarrow$ lattice formation (metals)

Why Vacuum?

Eichler-Miedema ΔH_{ads} (A in surface of B), kJ/mol

- * Fast chromatographic process
- * Clean surfaces
- * Stable surfaces also for more reactive metals
- * Stable elemental state for TA
- * No co-adsorption phenomena
- * (Good spectroscopic resolution)

Heavy Ion induced Nuclear Fusion Reaction

Recoiling Products with momentum of the beam: ->~30-50 MeV

Thermalization ???

Catcher Materials (Diffusion/Release)

or

Gas jet (Impaction → Desorption)

Vacuum Chromatography

Impaction and Release

Release Kinetics

J. Askill, Tracer Diffusion, Plen. Press, IFI 1970

CRATE @ BGS

CRATE @ BGS

IVAC Schematic

IVAC Schematic

IVAC Set-Up

Angular distribution of products leaving the column

CRATE @ BGS

CRATE @ BGS

Impaction and Release

Mylar degraders / Implantation depth

Metal-Aerosol Particles

Metal-Aerosol Particles

^{nat}Sm(⁴⁰Ar,6n)¹⁷⁸⁻¹⁸⁵Hg(α) –

→ PSI TAPE Detection system

11 He+100 ml/minAr

12 h experiments R.Elchler, TASCA Workshop Davos Sept. 28, 2007

column length: 30 cm

IVAC Set-Up

column length: 30 cm column length (Pb) 10 cm

Experiments with Detectors

Problem: semiconductors detectors are sensitive to light irradiation (visible light, IR)
Solution: coverage of detector surface by protection layer (carbon, metals with low Z)

Coverage materials used: C, Al, Mg, Mn, Co, Fe, Zn, Ag

Best material

Experiments with Glasses

Covered and non-covered glass 60 µg/cm² Mg/MgO Coverage

Experiments with PIN/PIPS Detectors

α-source: ²²⁷Ac (located at sealed end of column, inside of the oven)

²²⁷Ac \rightarrow ²¹⁹Rn (E_{α}=6,8MeV) \rightarrow ²¹⁵Po (E_{α}=7,6MeV) \rightarrow ²¹¹Pb(β) \rightarrow ²¹¹Bi (E_{α}=6,6MeV)

Column length: 15 cm Outlet of oven shielded by aluminum foil Diode located at ~5mm from the open end of column

Experiments with PIN/PIPS Detectors

Online Tests with α -source

Maximal operation temperature for:

- 1) Non-covered $375 \ ^{\circ}C$
- 2) Covered $675 \, {}^{0}C (!)$

α -resolution needed is about <100 keV

R&D Proposal IVAC@TASCA

- Test experiment: 2x 6 Shifts ⁴⁰Ar, ^{nat}Sm, ^{nat}Gd targets from GSI, Metal Aerosol tests with Pb and Hg GSI – ROMA Detection system (Fall 2008) (PSI-RTC, Small Image Mode)
 Test experiment: 2x 6 shifts ⁴⁰Ar, ^{nat}Sm, ^{nat}Gd targets from GSI, Gas-jet Impaction and Release Experiments with CRATE&IVAC (2009) (PSI-RTC, Small Image Mode)
- 3. Test experiment: 2x6 Shifts ⁴⁰Ar, ^{nat}Sm, ^{nat}Gd targets from GSI, CRATE with Catcher & IVAC (Silicon, Sn(?) TUM) (2009)

4. Follow-on Proposal: Hg, Tl, Pb, Bi, Po, At studies on various

stationary phases (Cu, Ag, Au, SiO₂)(2010).

5. Experiments with TA not before 2011-2012