Perspectives of the superheavy element chemistry at RIKEN GARIS

Nishina Center, RIKEN Hiromitsu Haba

CONTENTS

- 1. Present status of SHE chemistry at RIKEN GARIS
- 2. Future plans
 - 2.1. Production of SHE nuclides for chemical experiments
 - 2.2. New chemistry apparatus
- 3. Summary

Model experiments of the GARIS/gas-jet system

	²⁰⁶ Fr	²⁴⁵ Fm	²⁵⁵ No
Reaction	¹⁶⁹ Tm(⁴⁰ Ar,3 <i>n</i>)	²⁰⁸ Pb(⁴⁰ Ar,3 <i>n</i>)	²³⁸ U(²² Ne,5 <i>n</i>)
Cross section	376 μb ¹⁾	15 nb ²⁾	90 nb ³⁾
Beam energy (MeV)	170	199	114
Recoil energy (MeV)	32	32	9.6
Beam intensity (pµA)	2	2	4
Target (µg/cm ²)	120 (Tm)	420 (Pb)	310 (U ₃ O ₈)
Target backing (µg/cm ²)	30 (C)	30 (C)	1270 (Ti)
Magnetic rigidity (Tm)	1.64	2.01	1.93
He pressure (Pa)	88	88	38
Mylar window (µm)	3.5	3.5	1.0
Support grid (%)	89	89	72
Gas-jet eff. (%)	88 ± 4	83 ± 9	84 ± 9
GARIS eff. (%)	-	43 ± 4	5 ± 1

1) D. Vermeulen et al.: Z. Phys. A **318**, 157 (1984).

2) J. M. Nitschke et al.: Nucl. Phys. A313, 236 (1980).

3) This work

2. Future plans

2.1. Production of SHE nuclides for chemical experiments (a) ²³⁸U target

Z = 104 ²³⁸U + ²⁶Mg \rightarrow ²⁵⁹Rf + 5*n*: Oct. 8–10, 2007

- Acceleration of the ²⁶Mg beam at RILAC (~2 p μ A)
- Production and gas-jet transport of ²⁵⁹Rf ($T_{1/2} = 3.0 \text{ s}$) Optimization of the setting parameters of GARIS and the gas-jet system ²³⁸U + ²⁶Mg \rightarrow ²⁶¹Rf ($T_{1/2} = 78 \text{ s}$) + 3*n* ?

Background in α -spectrometry at the new chemistry laboratory

Chemistry laboratory for the SHE chemistry

Background level: ~1/100 of that in the target room

(b) ²⁴⁸Cm target and GARIS II

Great advantage for future SHE chemistry !!

Year	2007		2008			2009						
²⁴⁸ Cm material (~7 mg)												
Target system R&D		ent.										
Chem. Exp. @ GARIS		rese										
GARIS II R&D		đ										
Chem. Exp. @ GARIS II												

GARIS/gas-jet setting parameters, decay properties, and excitation functions

<i>Z</i> = 104	$^{248}\text{Cm} + {}^{18}\text{O} \rightarrow {}^{261}\text{Rf} + 5n$
<i>Z</i> = 105	$^{248}Cm + {}^{19}F \rightarrow {}^{262,263}Db + 5;4n$
<i>Z</i> = 106	$^{248}\text{Cm} + {}^{22}\text{Ne} \rightarrow {}^{265,266}\text{Sg} + 5;4n$
<i>Z</i> = 107	$^{248}Cm + {}^{23}Na \rightarrow {}^{266,267}Bh + 5;4n$?
<i>Z</i> = 108	$^{248}\text{Cm} + {}^{26}\text{Mg} \rightarrow {}^{269,270}\text{Hs} + 5;4n$
<i>Z</i> = 109	$^{248}Cm + ^{27}AI \rightarrow ^{270,271}Mt + 5;4n$?

Yields of SHE nuclides for chemistry experiments (rough estimation)

7	Populion	σ	GA	RIS I	GARIS II		
Ζ	Reaction	(pb)	Eff. (%)	Yield (1/d)	Eff. (%)	Yield (1/d)	
104	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>) ²⁶¹ Rf	13000	3.4	700	11.1	2300	
105	²⁴⁸ Cm(¹⁹ F,5 <i>n</i>) ²⁶² Db	1500	4.2	98	13.4	320	
106	²⁴⁸ Cm(²² Ne,5 <i>n</i>) ²⁶⁵ Sg	240	6.9	26	21.6	82	
107	²⁴⁸ Cm(²³ Na,5 <i>n</i>) ²⁶⁶ Bh	37*	8.2	4.8	25.1	15	
108	²⁴⁸ Cm(²⁶ Mg,5 <i>n</i>) ²⁶⁹ Hs	6	12.5	1.2	36.4	3.4	
109	²⁴⁸ Cm(²⁷ Al,5 <i>n</i>) ²⁷⁰ Mt	0.71*	14.4	0.16	40.8	0.46	
Assumptions							

- Target thickness: 300 μ g/cm²
- Beam intensity: 5 p μ A
- Gas-jet transport efficiency: 80%
- * from the σ vs. *Z* systematics
- Transport efficiency of GARIS Focal plane size: Φ60mm He pressure: 0.28 torr Length of GARIS II: 3.9 m

2.2. Chemistry apparatus

(a) Micro-chemical chip for ion exchange and solvent extraction

Micro flow path on glass or plastic surface

Laminar flow of aq. solution and org. solvent Large relative interaction area Short diffusion length Rapid ion exchange and solvent extraction Determination of distribution coefficient

Experimental setup

(b) Gas chromatograph column coupled to GARIS

3. Summary

Present status of SHE chemistry at RIKEN GARIS

- Development of a gas-jet transport system coupled to GARIS
- Model experiments
 ¹⁶⁹Tm(⁴⁰Ar,3*n*)²⁰⁶Fr, ²⁰⁸Pb(⁴⁰Ar,3*n*)²⁴⁵Fm, and ²³⁸U(²²Ne,5*n*)²⁵⁵No

Future plans

(a) Production of SHE nuclides for chemical experiments

- ²³⁸U(²⁶Mg,5*n*)²⁵⁹Rf on Oct. 8–10, 2007
- ²⁴⁸Cm target (end of 2008) and GARIS II (end of 2009)

(b) New chemistry apparatus

- Micro-chemical chip for ion exchange and solvent extraction
- Gas chromatograph column coupled to GARIS

The 2nd Workshop on SHE chemistry @ RIKEN in the end of 2007 What chemistries should be studied at RIKEN GARIS ?

Collaborators

RIKEN

T. Akiyama, H. Haba, T. Ichikawa, S. Ito, D. Kaji, K. Katori, H. Kikunaga, K. Morimoto, K. Morita, R. Nomura, N. Sato, H. Watanabe, and A. Yoneda

JAEA

M. Asai, Y. Ishii, Y. Kasamatsu, H. Koura, Y. Nagame, T. Sato, H. Tome, and A. Toyoshima Osaka Univ.

Y. Komori, R. Nakagaki, K. Ninomiya, K. Ooe, A. Shinohara, N. Takahashi, W. Yahagi, and

T. Yoshimura

Niigata Univ.

S. Goto, T. Hasegawa, T. Kawasaki, and H. Kudo Kanazawa Univ.

M. Araki, T. Nanri, and A. Yokoyama

Tohoku Univ.

Thank you very much T. Otsuki, K. Ozeki, and T. Shinozuka Tokyo Metropolitan Univ.

K. Akiyama and Y. Oura Univ. Tokushima

M. Sakama

Univ. Tsukuba

K. Sueki

Tokyo Univ.

E. Ideguchi Konan Univ. T. Wada

Participants in the 1st Workshop on SHE chemistry @ RIKEN (27 Aug. 2007)