Synthesis and Separation of Fm and No isotopes using TASCA

J. Khuyagbaatar (Baatar) GSI, Darmstadt, Germany

TASCA workshop 2007, Davos,

Contents

- <u>The synthesis and separation of the ²⁴⁵Fm.</u>
 - First experiment results of ⁴⁰Ar+²⁰⁸Pb reaction.
 - Second experiment results of ${}^{40}Ar + {}^{208}Pb$ reaction.
- The synthesis and separation of ²⁵⁶No.
 - Experimental results of ²²Ne+²³⁸U.
- <u>The synthesis and separation of ²⁵²No.</u>
 - Experimental results of ⁴⁸Ca+²⁰⁶Pb.
- <u>The synthesis and separation of ²⁵⁴No.</u>
 - Experimental results of ⁴⁸Ca+²⁰⁸Pb reaction (<u>Helium</u> and <u>Hydrogen</u>).

TransActinide Separator and Chemistry Apparatus

TASCA

M. Schädel et al., GSI Scientific Report 2005, GSI, Darmstadt, Germany, Report 2006-1, 2006, p. 262; see also http://www.gsi.de/TASCA

TransActinide Separator and Chemistry Apparatus

TASCA

material: Si active area: 80x35 mm² thickness: 300 µm position resolution: 200 µm Strips: 16

M. Schädel et al., GSI Scientific Report 2005, GSI, Darmstadt, Germany, Report 2006-1, 2006, p. 262; see also http://www.gsi.de/TASCA

Experiment T005

- Projectile: ⁴⁰Ar
 - Charge state: 10+
- Target: ²⁰⁸PbS
 - Thickness: 426 µg/cm²
 - Backing foil: 40 µg/cm² (C)
 - Coating foil: 10 µg/cm² (C)

The beam pulse structure

beam on: 5 ms beam off: 15 ms

Experiment T005

• Ta

Tł

Alpha spectrum in during the beam off period

We can great the additional beam on / off condition using the copper.

$\frac{^{40}\text{Ar}+^{208}\text{Pb}}{\rightarrow}^{245}\text{Fm}+3n$

- Projectile: ⁴⁰Ar
 - Charge state: 9+

Experiment T007

- Target: ²⁰⁸PbS
 - Thickness: 426 µg/cm²
 - Backing foil: 2 µg/cm² (Ti)
 - Coating foil: 10 µg/cm² (C)

$^{40}Ar + ^{208}Pb \rightarrow ^{245}Fm + 3n$

$\overset{40}{\text{Ar}}+\overset{208}{\text{Pb}}\rightarrow \overset{245}{\text{Fm}}+3n$

^{• Projec} Position distribution of ²¹³Rn and ²⁴⁵Fm in FPD

HTM

- Projectile: ²²Ne
 - Charge state: 5+
- Target: ²³⁸U
 - Thickness: 434 µg/cm²
 - Backing foil: 2.3 µg (Ti)
 - Coating foil: 10 µg/cm² (C)

Low energy spectrum in beam off duration 5/15 ms

Low energy spectrum in beam off duration 5/15 ms

HTM

• Project^{:1} ·· ²²No

- We measured the background to detect the alpha decay of ²⁵²Fm daughter nuclide of ²⁵⁶No
- Target:

Energy window for ²⁵²Fm: 6900-7100 keV

The relative rate of HTM mode is ~2 times higher than SIM

Low energy spectrum in beam off duration 5/15 ms

48 • **206**1

Distribution of ²⁵²No on the focal plane detector depends on helium gas

Projectile: ⁴⁸Ca

Charge state: 10+

Experiment T008

- Target: ²⁰⁸PbS
 - Thickness: 468 µg/cm²
 - Backing foil: 2.3 µg (Ti)
 - Coating foil: 10 µg/cm² (C)

HTM

We used 2 different gases: <u>Hydrogen</u>, <u>Helium</u>

Comparison of alpha spectra

Hydrogen gas

Best setting for this reaction: Q1=Q2=558 A, D=617A, H2=1.5 mbar, Best setting for this reaction: Q1=Q2=525 A, D=588A, He=0.8 mbar,

Distribution of ²⁵²No in the focal plane detector depends on different gas

Hydrogen gas

Helium gas

H2=1.5 mbar,

Summary and conclusion

- •The first at TASCA were Synthesized and Separated transuranium isotopes.
- •The transmission of HTM is about two times higher than SIM
- •The Helium and Hydrogen gases were compared for the same reaction.
- •The separation (suppression) of transfer reaction products *seems* better in case of Hydrogen gas.
- •The transmission *seems* to be better with Hydrogen gas.