The TASCA FPD + DAQ – new developments

28.09.2007 TASCA'07 Workshop Davos, Switzerland

140 x 40 mm²

28.09.2007 TASCA'07 Workshop Davos, Switzerland

Size of focal plane detector depends on image size of EVRs

28.09.2007 TASCA'07 Workshop Davos, Switzerland

EVR distribution and detector size

TASCA'07 Workshop Davos, Switzerland

The TASCA FPD+DAQ – new developments

good energy resolution

😕 bigger pixel size

PSD

Smaller number of electronic channels 🕲 smaller pixel size

8 more electronics needed

B problems with position calibration

position defined by pixel size

If we have enough electronics, DSSD is more preferable A. Yakushev, TU Munich

TASCA'07 Workshop Davos, Switzerland

The TASCA FPD+DAQ – new developments

DGFRS

PSD (2 detector)

Active area: 58*58 mm Chip dimensions: 60*60 mm Number of strips : 16 (3.75 mm x 60 mm) Energy resolution : 40 keV

SSD (6 detectors)

Active area: 58*58 mm Chip dimensions: 60*60 mm Number of strips : 16 (3.63 mm x 58 mm) Energy resolution : 20 keV

Total number of channels: 192

28.09.2007 TASCA'07 Workshop A.Dava Kulson

A. Yakushev, TU Munich TASCA detector of the tradeting w developments 19.03.2007

GREAT

DSSD (2 detectors)

Active area: 60*40 mm Chip dimensions: 63.5*43.5 mm Number of strips : 60 + 40 Energy resolution : 17-20 keV

PIN diodes (28 detectors)
 Active area: 28*28 mm
 Thickness: 500 μm
 β resolution: ~ 5 keV
 2 chips on motherboard

Total number of channels: 228

A. Yakushev, TU Munich The TASCA FPD+DAQ – new developments

28.09.2007 TASCA'07 Workshop Davos, Switzerland

FPD setups

A. Yakushev, TU Munich The TASCA FPD+DAQ – new developments

28.09.2007 TASCA'07 Workshop Davos, Switzerland

First probing DSSD at TASCA

28.09.2007 TASCA'07 Workshop Davos, Switzerland

First probing DSSD at TASCA

Development of DSSD and SSD with size 72 x 48 mm²

2 x DSSD 72 x 48 mm² (1 mm pitch) 8 x SSD 72 x 48 mm² (16 or 8 strips)

28.09.2007 TASCA'07 Workshop Davos, Switzerland

Geometrical efficiency for alpha particle detection

Focal plane detector dimentions, mm	Box depth, mm	Efficiency
120 x 40	60	72.1%
120 x 60	60	69.9%
144 x 48	72	72.1%

TASCA'07 Workshop Davos, Switzerland

The TASCA FPD+DAQ – new developments

DSSD structure (p+ - n - n+)

Structure size "mechanical" 77 x 56 mm Structure size "electronic" 74 x 50 mm Active area 72 x 48 mm Number of vertical strips 72 Number of horizontal strips 48 *"X" Strip (p+ - anode) pitch* 1 mm "Y" Strip (n+ - cathode) pitch 1 mm *310 ± 10* μ*m* Total thickness of the structure Thickness of the n active layer *305 ± 10 µm*

Single side strip detector (SSSD) /Warsaw/

Ceramic carrier

 Al_2O_3 ceramic d=0,63 mm, 80 x 48 mm

Common cathode

Anode pads (16 x)

SSSD structure (p+ - n - n+)

Detector

Structure size Active area Number of strip Pitch Total thickness of the structure Thickness of the n-active layer 72 x 48 mm 70 x 46 mm 16 or 8 2,875 or 5.75 mm

 $500\pm20~\mu m$

 $495\pm20\;\mu\text{m}$

28.09.2007 TASCA'07 Workshop Davos, Switzerland

Electronics: possible solutions

1. Integrated preamplifiers and flash ADCs – development by J. Hoffmann, GSI propotype could be ready in two years

③ stored pulse shape gives more information

2. Electronics from Dubna
16x preamplifiers
16x amplifiers with 2 outputs (alpha and SF)
CAMAC based ADCs or VME based ADCs

proved and stable
can be used for other experiments (chemistry)