Evolution of the new experimental set ups for studies of transfermium elements in the reactions with heavy ions at FLNR JINR.

Yeremin A.V.

TASCA 07 6th workshop on recoil separator September 27, 2007, Conference Centre, Davos, Switzerland

eremin@jinr.ru

Presently Working Experimental Set Ups

Dubna Gas Filled Separator (Russia) SHIP (Darmstadt, Germany) Berkeley Gas Filled Separator (USA) GARIS (Saitama, Japan) VASSILISSA (Dubna, Russia) LIZE3 (GANIL, France) RITU (JYFL, Finland) FMA (Argonne, USA) JAERI-RMS (Tokai, Japan)

Heavy element research

Dubna Gas Filled Recoil Separator (DGFRS)

Electro Static separator VASSILISSA

GABRIELA Gamma Alpha Beta Recoil Investigation with the Electromagnetic Analyser

Mass Analyzer of Super Heavy Atoms

MASHA test with ^{nat}Xe and ^{nat}Hg isotopes

Bottom lines:

- During past 25 years 10 new elements (107 116) were synthesized.
- Experimental set ups used kinematic separators.
- Methods of synthesis: "Cold fusion" the use of Pb, Bi targets (E* ~ 10 – 20 MeV); "Hot" fusion – the use of U, Pu, Cm, Cf targets (E* ~ 30 – 50 MeV).
- Main method of identification registration of α and SF (Generic decay links).

Synthesis of transfermium elements: reaction dynamics - conclusions

- Big charge and/or mass asymmetry at the entrance channel increases formation cross section
- Closed shells increases fusion probability
- High T_z in the projectile or in the target increases fusion probability
- Neutron excess (the increase of isospin T_z) in the CN increases the survival probability

Perspectives of the experiments to study reaction dynamics and spectroscopy studies:

Stable beams + exotic targets

Study of the fusion dynamics of nuclei with closed shells (¹³⁶Xe + ¹³⁶Xe). Study of the reaction dynamics with stable beams of ^{62,64}Ni, ^{84,86}Kr, ^{134,136}Xe Focal plane spectroscopy studies with stable beams of ²²Ne, ²⁶Mg, ^{34,36}S, ^{44,48}Ca and exotic targets ²³⁶U, ^{242,244}Pu, ²⁴³Am, ²⁴⁸Cm Kinematic separator, gas – jet technique

\star

 \bigstar

Exotic beams + stable targets

Study of the reaction dynamics: formation cross sections, influence of the closed shells, check of the superheavies – bridge between results of"cold" and "hot" fusion. Spectroscopy studies: new neutron rich isotopes, detailed study of the nuclear structure in vicinity of N = 162 subshell

Regions of interests in spectroscopy with kinematic separators

New neutron deficient isotopes in polonium region (strong change of deformation, break of G-N law, shape coexistence,...)

Isomer study in radium - uranium region

Study of new neutron deficient plutonium - curium isotopes (fission barrier,...)

Spectroscopy in fermium region (K-isomers, single particle level systematic, decay properties...) Future possible experiments with Ge and electron detectors at focal plane in Dubna

Study of decay properties and /or γ and/or electron spectroscopy in two regions: Rn - U and Fm - Sg <u>Advantages of Dubna</u>:

Radioactive targets : \rightarrow more neutron rich nuclei

Prospective reactions		
Mother		Daughter
²³⁸ U (²⁶ Mg,5n) ²⁵⁹ Rf	1.1 nb	²⁵⁵ No ₁₅₃ (Z=102
²⁴² Pu (²² Ne,5n) ²⁵⁹ Rf	5.0 nb	²⁵⁵ No ₁₅₃ (Z=102)
²⁴⁸ Cm (¹⁸ O,5n) ²⁶¹ Rf	13 nb	²⁵⁷ No ₁₅₅ (Z=102
²⁴⁴ Pu (²² Ne,5n) ²⁶¹ Rf	5.0 nb	²⁵⁷ No ₁₅₅ (Z=102
²⁴³ Am (²² Ne,5n) ²⁶⁰ Db	2.0 nb	²⁵⁶ Lr ₁₅₃ (Z=103)
²⁴³ Am(²² Ne,4n) ²⁶¹ Db	1.5 nb	²⁵⁷ Lr ₁₅₄ (Z=103)
²⁴⁸ Cm (²² Ne,5n) ²⁶⁵ Sg	1.3 nb	$^{261}\text{Rf}_{157}(Z=104)$

Unique radioactive targets, such as ²¹⁰Pb, ^{242,244}Pu, ²⁴³Am, ²⁴⁸Cm are available in Dubna and could be used in order to populate excited states in the heavy neutron rich nuclei. This offers the opportunity to give insight into the single neutron and proton structure.

Possible spectroscopy experiments with stable beams and exotic targets CHART OF THE NUCLIDES

Way to the asymmetric combinations

- Achievement: neutron rich isotopes, that could not be reached in more symmetric combinations.
- Disadvantage: very broad energy and angular distributions of recoils => low transmission of the kinematic separators

Possible solutions

- Design of new kinematic separator for asymmetric combinations. Modernization of the existing set up.
- Modernization of the accelerators
- Alternative experimental installations (gas jet, gas jet + ISOL)

Modernization of the U400M cyclotron (march – october 2007)

- to accelerate "low" (6÷15 MeV/A) energy ions (to move some experiments from U400 to U400M),
- to extract the "low energy" beams to the opposite direction and to organize new experimental hall.

Modernization of the U400 cyclotron (year 2009)

- > to increase the ion beam intensity up to $10^{13} 10^{14}$ s⁻¹,
- \succ to improve the beam energy resolution up to 5.10⁻⁴,
- to vary smoothly the beam energy in the range 0.8 ÷ 10 A·MeV,
- to decrease the power consumption from 1 to 0.25 MWatt.

Installation configurations at U400 cyclotron

VASSELESSA DETECTOR ROOM

Possible installation configurations at U400M cyclotron

Installation: low energy beam line of the U400M

Experimental tests for asymmetric combinations

1) VASSILISSAToF: 2 thin foils (20 µg each) ²²Ne + ¹⁹⁷Au \longrightarrow ²¹⁴Ac + 5n ε = 2 % 2) VASSILISSA ToF: 1 thin foils ²²Ne + ¹⁹⁷Au \longrightarrow ²¹⁴Ac + 5n ε = 5 %

1) VASSILISSA ToF: 1 thin foil $^{22}Ne + ^{238}U \longrightarrow ^{255}No + 5n \epsilon = 1.5 \%$ 2) VASSILISSA ToF: without foils $^{22}Ne + ^{238}U \longrightarrow ^{255}No + 5n \epsilon = 2 \%$

1) DGFRS $^{22}Ne + ^{197}Au \longrightarrow ^{214}Ac + 5n \epsilon = 12 \pm 3\%$ 2) DGFRS $^{22}Ne + ^{238}U \longrightarrow ^{255}No + 5n \epsilon = 6 \pm 2\%$

1) SHIP: ToF : without foils $^{22}Ne + ^{238}U \longrightarrow ^{255}No + 5n \epsilon = 3 \pm 1\%$

Calculations : VASSILISSA ²²Ne + ²³⁸U \longrightarrow ²⁵⁵No + 5n $\epsilon = 2\%$

Requirements for new separator

 Increased transmission & detection of recoils produced in asymmetric reactions induced by light ions

=> larger acceptance

=> minimization of scattering/straggling through matter

=> additionnal focussing onto focal plane detector

Shielding of target-position as well as focal-plane detectors from beam dump and background from separator

$^{22}Ne + ^{238}U \rightarrow ^{260}No^*$

Nucleus	E(MeV)	Bρ (vacuum T·m)	Βρ (He. T·m)	Βρ (Η ₂ . Τ·m)	V (cm/ns)	E/q (MV) vacuum
²² Ne	112.4	0.76	0.76	0.76	3.14	11.7
²⁶⁰ No	9.5	0.74	1.82	2.45	0.26	0.99
238U	34.8	0.72	1.89	2.01	0.53	1.93
⁴ He	58.5		1.1		5.3	

Distance between plates 20 cm; High voltage ± 100 kV: Plate length ~ 15 cm; Electric rigidity accepted => 1.5 MV

$^{48}Ca + ^{244}Pu \rightarrow ^{292}114^*$

Nucleus	E(MeV)	Bρ (vacuum T·m)	Βρ (He. T·m)	Βρ (H ₂ . T·m)	V (cm/ns)	E/q (MV) vacuum
⁴⁸ Ca	236	0.88	0.94	0.94	3.1	13.0
²⁹² 114	38.8	0.79	2.0	2.18	0.51	2.0
²⁴⁴ Pu	129.7	0.83	1.65	1.49	1.0	4.2
⁴ He	67		1.2		5.7	

Distance between plates 15 cm; High voltage ± 150 kV: Plate length ~ 15 cm; Electric rigidity accepted => 2 MV

$^{136}Xe + {}^{136}Xe \rightarrow {}^{272}Hs^*$

Nucleus	E(MeV)	Bρ (vacuum T·m)	Βρ (He. T·m)	Βρ (H ₂ . T·m)	V (cm/ns)	E/q (MV) vacuum
¹³⁶ Xe	600	1.1	1.38	1.38	3.0	15.7
²⁷² Hs	300	0.95	1.39	1.21	1.46	6.85
¹³⁶ Xe	600	1.1	1.38	1.38	3.0	15.7
⁴He	66.6		1.2		5.7	

Distance between plates 10 cm; High voltage ± 200 kV: Plate length ~ 50 cm; Electric rigidity accepted => 8 MV

Separator for TransActinide Research "STAR"

Layout of the MQh-MQv-MQh-ES-MS-CMS - vacuum separator.

Separator for TransActinide Research "STAR"

Layout of the gas filled separator

Velocity filter for asymmetric combinations (modernization of VASSILISSA)

Q_h**Q**_v**Q**_h**EDS - GICOSY beam plot**

1.000 m

Preliminary separator design

Example of envisaged configuration: vacuum QQQEDS Length: ~ 8 m estimated transmission efficiency for ²²Ne+²³⁸U: 10 – 15 % (VASSILISSA 2 %, DGFRS 6 %)

NO problems with timing detectors

More expensive in comparison withngas filled separator (factor of 1.5)

Q_hDQ_vQ_hD - GICOSY beam plot

GNS_Q_HD23Q_VQ_HD8 ²²Ne(112 MeV)+²³⁸U(met, 0.3 mg/cm²) ->²⁵⁶No+4n GICOSY BEAM PLOT, He-filling

Preliminary separator design

Example of envisaged configuration: gas filled QDQQD Length: ~ 6.6 m estimated transmission efficiency for ²²Ne+²³⁸U: 10 – 15 % (Vassilissa 2 %, DGFRS 6 %)

 Problems with timing detectors

 More cheap in comparison with vacuum separator (factor of 1.5)

Gas filled separators for asymmetric combinations

- Range of ²³⁸U (10 MeV) 7.8 m in He (2 mbar)
- After the flight path of 5 m ion energy is about 2 MeV, too small for timing detectors.

Comparison of the different types of the separators

Separator Reaction	VASSILISSA after modernization QQQEDDEQQQ	Vacuum type separator Q-Q-Q-E-D-S	Gas filled separator Q-D-Q-Q-D
Symmetric Ap/At > 0.6	Fine transmission, acceptable suppression factors	Fine transmission, poor suppression factors	Could not be used because Bp of beam in gas is close to Bp of ERs
Intermediate 0.2 < Ap/At < 0.6	Fine transmission, fine suppression factors	Fine transmission, fine suppression factors	Fine transmission, fine suppression factors
Asymmetric Ap/At < 0.2	Acceptable transmission, fine suppression factors	Fine transmission, fine suppression factors	Fine transmission, fine suppression factors

Main properties of the new separator "STAR" (vacuum type)

Magnetic dipole

Electric dipole

Deflection angle	16 ⁰	Deflection angle	8 ⁰
Radius of curvature	3.1 m	Radius of curvature	3.2 m
Maximum field	1.2 T	Maximum field	40 kV/cm

Quadrupole lens

Solenoid lens

Effective length	0.37 m	Effective length	1 m
Bore diametr	0.2 m	Bore diameter	0.15 m
Maximum field	13.0 T/m	Maximum field	1.0 T

Main properties of the new separator "STAR" (gas filled type)

Main magnetic dipole

First quadrupole lens

Deflection angle	30 ⁰	Effective length	0.3 m
Radius of curvature	1.8 m	Bore diameter	0.11 m
Maximum field	1.8 T	Field gradient	10.0 T/m

2nd and 3d quadrupole lenses

2nd magnetic dipole

Effective length	0.6 m	Deflection angle	10 ⁰
Bore diameter	0.22 m	Radius of curvature	1.8 m
Field gradient	9.0 T/m	Maximum field	1.7 T

Alternative developments

• Gas jet (aerosol) + filters

Low detection efficiency, rather bad resolution, unstable efficiency

Gas jet (aerosol) + ISOL (efficiency for ²⁵⁷No from ¹³C + ²⁴⁸Cm reaction – 0.46 %) M. Asai et. al., PRL 95 (2005) 102502

Good for very asymmetric combinations.

Future developments: γ spectroscopy of superheavies High detection efficiency

the focal plane of MASHA for γ detection, 80 % detection efficiency