

Toward element 117 1) ${}^{48}Ca + {}^{244}Pu \rightarrow {}^{288}114 + 4n$ 2) Element 117 search @ TASCA

Christoph E. Düllmann

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

for upcoming TASCA-117 collaboration

Presented on the 7th workshop on Recoil Separator for Superheavy Element Chemistry **TASCA 08**, October 31, 2008, GSI Darmstadt, Germany

The TASCA-117 Collaboration

The Periodic Table

1	_																18
1																	2
н	2	_										13	14	15	16	17	Не
3	4											5	6	7	8	9	10
Li	Ве											В	С	Ν	Ο	F	Ne
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57+*	72	73	74	75	76	77	78	79	80	81	82	83	8/		86
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi			
87	88	89+	104	105	106	107	108				112				_		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	109	110	111		113	114	115	6		1
								Mt	Ds	Rg							-
		*	58	59	60	61	62	63	64	65	66	67	68	69			
			Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		"	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

SHE @ TASCA: What is needed?

Beam Target **Magnet settings** Fill gas **Recoil veto detector Focal plane detector** DAQ **Beamtime / Proposal** Manpower

Step 2: Element 117 search

²⁴⁴Pu(⁴⁸Ca,xn)^{292-x}114

⁴⁸Ca ✓ **Beam** Target Magnet settings FII 985 Recoil veto detector Focal plane detector DAOBeamtime / Proposal Manpower

²⁴⁴Pu target (~380 μg/cm²)

-Pr -14 -21 site

History of this target: -Produced in Mainz in summer 2008 -14-day ²²Ne irradiation for study of ²⁴⁴Pu(²²Ne,x*n*)^{266-x}Rf Intensity ~800 nA_n -21-h ⁴⁸Ca irradiation to test target stability and background in TASCA (some main beam ~400 nA_n) -Analysis of the target @ GSI

The target remained unchanged!

Beam ⁴⁸Ca ✓ Target ²⁴⁴Pu ✓ Magnet settings

Fill gas Recoil veto detector Focal plane detector DAQ Beamtime / Proposal Manpower

Deflection of ions TASCA governed by B·p

FIG. 1. Average charges of heavy ions passing through dilute He gas.

K.E. Gregorich et al., PRC 72 (2005) 014605

Based on FLNR Data, H₂ coefficients determined and tested at TASCA. Works, also for mixtures

⁴⁸Ca √ Beam Target ²⁴⁴Pu ✓ **Magnet settings Fill gas** Recoil veto detector Focal plane detector DAOBeamtime / Proposal Manpower

Beam ⁴⁸Ca ✓ Target ²⁴⁴Pu ✓ Magnet settings Fill gas Recoil veto detector

Focal plane detector DAQ Beamtime / Proposal Manpower

Planned TASCA Detection System

Recoil Veto Detector

-LBNL builds advanced MWPC prototype, will be tested in Dec. 2008

-LBNL agreed to adapt design + to build a copy matching TASCA FPD dimensions, respecting test results

Anticipated timeline:

Design:

Production:

Ready to implement:

Dec. 2003 Jan. 2009 Feb. 2009

⁴⁸Ca ✓ Beam Target ²⁴⁴Pu ✓ **Magnet settings Fill gas Recoil veto detector Focal plane detector** DAGBeamtime / Proposal

Manpower

Focal pane detector: DSSD Double Sided Strip Detectors

Tested @ TASCA during commissioning

Focal Plane+Upstream + Punchthrough Detector Box

Under construction @ IFE Warsaw Delivery to TUM: end of 2003

⁴⁸Ca ✓ Beam Target ²⁴⁴Pu ✓ **Magnet settings Fill gas Recoil veto detector Focal plane detector** DAQ

Beamtime / Proposal Manpower

Data Acquisition

Hardware design fixed, most components ordered

Based on GSI's RIO4/MBS & GO4

⁴⁸Ca ✓ Beam Target ²⁴⁴Pu ✓ **Magnet settings Fill gas Recoil veto detector Focal plane detector** DAQ

Beamtime / Proposal

Manpower

$$\begin{array}{c} 244 \text{Pu} \left(48 \text{Ca}, x \right) \\ 4n \\ 114 \\ 114 \\ 114 \\ 0.13 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.8 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 0.1 \\$$

²⁴⁴Pu(⁴⁸Ca,xn) ³ⁿ_{4n}

Excitation function (Dubna GFRS)

FIG. 1. Excitation functions for the $3n (\square)$, $4n (\bullet)$, and $5n (\nabla)$ evaporation channels from the complete-fusion reaction ²⁴⁴Pu + ⁴⁸Ca. The Bass barrier [8] is shown by an arrow. Lines show the results of calculations [9]. Error bars correspond to statistical uncertainties.

EVR-
$$\alpha$$
- α -SF (long)

EVR- α -SF (short)

Yu. Oganessian et al. PRC 69 (2004) 054607

Beamtime / Manpower ⁴⁸Ca+²⁴⁴Pu **Assuming: 380 μg/cm² Target:** 500 nA_{part} **Beam: Cross section:** 5 pb **TASCA** efficiency: ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No: 50% ETASCA 520µg/cm² Target, into 100% ε_{Det}: 80x35 mm² FPD: **Beam-on-target time:** 80% Exp: 54% MCS: 55% Expect 3.5 events per 7-day week w optimum conditions. Allow for multiple E_{beam}, fill gases, B-p Six weeks of beamtime needed

⁴⁸Ca ✓ Beam Target ²⁴⁴Pu ✓ **Magnet settings Fill gas Recoil veto detector Focal plane detector** DAQ **Beamtime / Proposal** Manpower \rightarrow later

Search for element 117

Search for element 117 @ TASCA: What is needed?

Beam Target

Wagnet settings

Recoil veto detector

Focal plane detector

DAQ

Beantime / Proposal

Manpower

Which nuclear reaction?

Beam	Target	CN
⁴¹ K	²⁴⁹ Cf	²⁹⁰ 117
⁴⁸ Ca	²⁴⁹ Bk	²⁹⁷ 117
⁴⁵ Sc	²⁴⁸ Cm	²⁹³ 117
50 i	²⁴³ Am	²⁹³ 117
51 <mark>V</mark>	²⁴⁴ Pu	²⁹⁵ 117
⁵⁴ Cr	²³⁷ Np	²⁹¹ 117
⁵⁵ Mn	238U	²⁹³ 117

Experimental cross section systematics ⁴⁸Ca+An (DGFRS)

- The isotope production program at Oak Ridge National Laboratory (ORNL) has essentially stopped since the beginning of 2008
- Responsibility for this program has been transferred within the DOE from "Nuclear Engineering (NE)" to "Nuclear Physics (NP)" (low energy) division
- NP has held a workshop in August 2008 on "The Nation's Needs for Isotopes: Present and Future to assess the Nation's need for isotopes"
 - the workshop had more than 70 participants from most National Labs, Government agencies, Universities and Industry
 - three 1 ½ working-day sessions found that there is a tremendous need and demand for stable and radioactive isotopes

- Three Working Sessions:
 - Stable and Enriched Isotopes

 - Radioisotopes for Applications
- It was decided that the Nuclear Science Advisory Committee (NSAC) will form a sub-committee to further asses the Nation's isotope needs, which has been established
 - Chairs: Ani Aprahamian(Physics, U. Notre Dame) and Don Geesaman (ANL)

- Charges to the Sub-committee
 - —1) to consider broad community input regarding how research isotopes are used and to identify compelling research opportunities using isotopes, and
 - —2) study the opportunities and priorities for ensuring a robust national program in isotope production and development, and to recommend a long-term strategic plan that will provide a framework for a coordinated implementation of the National Isotopes Production and Applications Program over the next decade.

- There are currently four production rods with ²⁴⁴Cm in the core of the HFIR to breed ²⁵²Cf.
- It is planned to remove them at the end of 2008 or early in 2009
 - after a three-month cooling period they could be processed by the personnel who used to work in the Radiochemical Engineering Development Center (REDC) at ORNL to recover the ²⁵²Cf
 - the current uncertainty is if this processing will be authorized by DOE
 - there is a good possibility that this may occur because there was a high demand from several costumers, especially from the petroleum industry

(When) will ²⁴⁹Bk be available for an experiment ?

- After ²⁵²Cf separation, further reprocessing to isolate ²⁴⁹Bk would be required, charged to us on cost basis
 - if the cost is reasonable LBNL would cover this, otherwise a joint solution has to be found
- Timeline: Uncertain at the moment, but....
 - perhaps available in May/June 2009?
 - Heino Nitsche (LBNL/UCB) is in contact with the decision makers at ORNL
 - final decision whether ²⁴⁹Bk will be available or not (and how much) is expected before the end of 2008
 - Heino Nitsche would take care personally that shipment will actually leave ORNL
 - receivers in Germany would guarantee the same

H. Nitsche

Search for element 117 @ TASCA: What is needed?

Beam Target **Magnet settings** Fill gas as for E114 **Recoil veto detector Focal plane detector** DAQ **Beamtime / Proposal**

Manpower

Beamtime ⁴⁸Ca+²⁴⁹Bk – Case 1

Rotating target wheel: $400 \ \mu g/cm^2$ Beam: $500 \ nA_{part}$ Cross section: $\geq 0.5 \ pb$ ϵ_{TASCA} :50% ϵ_{Det} :100%Beam-on-target time:80%

Expect 1 event every 19 days.

In 9 weeks, expect 3.29 events.

Poisson probability to see ≥ 1 event when 3.29 are expected: 96.2%

→ Request: 210 shifts (10 weeks)

Beamtime ⁴⁸Ca+²⁴⁹Bk – Case 2 **Stationary 10mm ø target: 400 μg/cm²** 250 nA_{part} **Beam:** ≥0.5 pb **Cross section:** 50% ETASCA: 100% E_{Det} **Beam-on-target time:** 80% Expect 1.8 events every 10 weeks. In 4 months of beamtime, that is 3.17 events (neglecting ²⁴⁹Bk decay! After 4 months: 77% left) Possion prob. to see ≥ 1 events: 95.8% → Request: 365 shifts

Beamtime request	for ²⁴⁴ Pu + ²⁴⁹ B	<mark>8</mark> k
With a rotating ²⁴⁹ Bk tai	rget wheel	
⁴⁸ Ca+ ²⁴⁴ Pu: (6 weeks)	126 shifts	
⁴⁸ Ca+ ²⁴⁹ Bk: (10 weeks)	210 shifts	
	Total: 336 shifts	

With a stationary ²⁴⁹Bk target ⁴⁸Ca+²⁴⁴Pu: (6 weeks) 126 shifts ⁴⁸Ca+²⁴⁹Bk: (4 months) 365 shifts Total: 491 shifts

Search for element 117 @ TASCA: What is needed?

Beam TTTTT Target **Magnet settings** Fill gas as for E114 **Recoil veto detector Focal plane detector** DAQ Manpower →YOU!!!

Manpower needs – Case 1 ⁴⁸Ca+²⁴⁴Pu: 126 shifts ⁴⁸Ca+²⁴⁹Bk: 210 shifts

Needs: 1 person per shift, 21 shifts/week On call: One TASCA expert One DAQ/Hardware/Analysis expert

One person works five 8-hour shifts per week

Which nuclear reaction?

Beam	Target	CN	comment
⁴¹ K	²⁴⁹ Cf	²⁹⁰ 117	n-poor(?)
⁴⁸ Ca	²⁴⁹ Bk	²⁹⁷ 117	¹ ⁴⁸ Ca; n-rich
⁴⁵ Sc	²⁴⁸ Cm	²⁹³ 117	(Target not ready)
⁵⁰ Ti	²⁴³ Am	²⁹³ 117	2a beam@GSI?
51 V	²⁴⁴ Pu	²⁹⁵ 117	<mark>2b (√)</mark>
⁵⁴ Cr	237Np	²⁹¹ 117	symmetric
⁵⁵ Mn	238	293117	symmetric

⁵⁰ Ti+ ²⁴³ Am	⁵¹ V+ ²⁴⁴ Pu					
(more asymmetric)	(more symmetric)					
Beam						
Development under way. Maybe ready by 01/2010	Ready					
Tar	get					
To be made, no problems expected	Ready					
CN / Chains						
²⁹³ 117	²⁹⁵ 117					
3n known from 113 on	3n/4n known from 115 on					
Cross section						
Zagrebaev et al.: 85 fb	??? (Probably less)					

If no ²⁴⁹Bk becomes available, the collaboration has to deliberate which izom ens zinemineqxe attractive

Conclusion: TASCA is a great device to search for E117!

Optimistic but realistic:

Ready for ⁴⁸Ca+²⁴⁴Pu by March/April 2008
 Aspect 1: test Dubna results
 Aspect 2: preparation for E117 search
 Aspect 3: preparation for E114 chemistry @TASCA

Six weeks of beamtime desirable.

 If ²⁴⁹Bk becomes available, TASCA has a good chance to discover element 117 in a ten-week (or 4 month) run later in 2009.