RIKEN GARIS for Superheavy Element Chemistry

Nishina Center, RIKEN Hiromitsu Haba

CONTENTS

1. Introduction

2. Present status of GARIS

2.1. Developments in 2008

Rotating ²⁴⁸Cm target and new gas-jet chamber

2.2. Production of ²⁶¹Rf and ²⁶⁵Sg

3. Chemistry programs

4. Summary and perspectives

1. Introduction

RIKEN GARIS as a pre-separator for SHE chemistry

Startup of the SHE chemistry in RIKEN

Model experiments with a prototype gas-jet transport system

```
 <sup>169</sup>Tm(<sup>40</sup>Ar,3n)<sup>206</sup>Fr (15.9 s)
 <sup>208</sup>Pb(<sup>40</sup>Ar,3n)<sup>245</sup>Fm (4.2 s)
 <sup>238</sup>U(<sup>22</sup>Ne,5n)<sup>255</sup>No (3.1 min)
```


Powerful tool for SHE chemistry

Extremely low background condition Beam-independent high gas-jet efficiency

For the future SHE chemistry \rightarrow ²⁴⁸Cm-based hot fusion reactions

Z	Reaction	σ (pb)
104	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>) ²⁶¹ Rf	13000
105	²⁴⁸ Cm(¹⁹ F,5 <i>n</i>) ²⁶² Db	1500
106	²⁴⁸ Cm(²² Ne,5 <i>n</i>) ²⁶⁵ Sg	240
107	²⁴⁸ Cm(²³ Na,5 <i>n</i>) ²⁶⁶ Bh	40*
108	²⁴⁸ Cm(²⁶ Mg,5 <i>n</i>) ²⁶⁹ Hs	7

* from the $\sigma(5n)$ vs. Z systematics

In this presentation

1. Present status of GARIS

Developments in 2008 Rotating ²⁴⁸Cm target New gas-jet chamber Chemistry laboratory

 \rightarrow Production of ^{261}Rf and ^{265}Sg

- 2. Chemistry programs at RIKEN
- 3. Future plans

2. Present status of GARIS

2.1. Developments in 2008 Rotating ²⁴⁸Cm target

- Purification with ion exchange
- Electrodeposition

 0.54 mg of ²⁴⁸Cm in 20 µL of 0.2
 M HNO₃ + 5.5 mL 2-propanol
 1000 V x 11 mA/cm² for 10 min
 → 280 µg/cm² ²⁴⁸Cm₂O₃
 - on 2.0 µm Ti backing foil

Water-cooled cell for electrodeposition

New gas-jet chamber

Size of the focal plane: $\Phi 60 \text{ mm} \rightarrow \Phi 100 \text{ mm}$

Support mesh: Φ 4-mm circular holes (72%) $\rightarrow \Phi$ 2-mm circular holes (78%)

Mylar window: 1.1 $\mu m \rightarrow 0.5 \ \mu m$ thickness

Chemistry laboratory

2.2. Production of ²⁶¹Rf and ²⁶⁵Sg

Experimental conditions for ²⁶¹Rf

. <u></u>				
	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>) ²⁶¹ Rf	^{nat} Gd(¹⁸ O, <i>xn</i>) ¹⁶⁹ Hf		
Cross section	13 nb ¹⁾	170 mb ²⁾		
Beam energy (MeV)	95.4	\leftarrow		
Beam intensity (pµA)	6	\leftarrow		
Target on 2 µm Ti (µg/cm ²)	250	300		
ER recoil energy (MeV)	6.3	9.6		
Magnetic rigidity (Tm)	1.58-2.16	1.48-1.63		
GARIS He (Pa)	32	\leftarrow		
Mylar window (µm)	0.54	\leftarrow		
Support mesh (%)	78	\leftarrow		
Gas-jet He (kPa)	49	←		
He flow rate (L/min)	2	←		
KCI generator (°C)	620	\leftarrow		
1) Nagame et al.: J. Nucl. Radiochem. Sci. 3, 85 (2002).				
2) Calculated with PACE4.				

Experimental setup

GARIS

Focal plane Si detector

248Cm(18O,5*n*)261Rf

Mixed ²⁴⁸Cm/^{nat}Gd target

 \rightarrow Simultaneous chemical experiments with ²⁶¹Rf and ¹⁶⁹Hf

 $B\rho = 1.57 \pm 0.01$ Tm for ¹⁶⁹Hf

Change of the magnet settings of GARIS: ~1 min for ²⁶¹Rf ↔ ¹⁶⁹Hf

Production of ²⁶⁵Sg with the GARIS/gas-jet system

Oct. 1–6, 2008

Experimental conditions for ²⁶⁵**Sg**

Reaction	²⁴⁸ Cm(²² Ne,5 <i>n</i>) ²⁶⁵ Sg		
Cross section	200-300 pb [*]		
Beam energy (MeV)	117.9		
Beam intensity (pµA)	3		
Target on 2 µm Ti (µg/cm ²)	250		
Recoil energy (MeV)	9.4		
Magnetic rigidity (Tm)	1.73, 1.94, 2.05, 2.16		
GARIS He (Pa)	32		
Mylar window (µm)	0.65		
Support grid (%)	78		
Gas-jet He (kPa)	48		
He flow rate (L/min)	2		
KCI generator (°C)	600		
*Düllmann and Tüler: Phys. Rev. C 77, 064320 (2008).			

248Cm(22Ne,5n)265Sg

14 correlations (35 α/fission events) on 265 Sg, 261 Rf, and 257 No Bρ = 2.07±0.01 Tm, ΔBρ/Bρ = 8.4±1.1%

3. Chemistry programs

Workshop on SHE Chemistry at RIKEN (Dec. 11–12, 2007, KUR) What chemistries should be studied at RIKEN?

GARIS@RILAC

- Decay studies of Rf and Sg isotopes for chemical investigations (H. Kudo of Niigata Univ.)
- 2. Solvent extraction of Sg with micro-chemical chip and LS
 - (A. Shinohara of Osaka Univ.)
- 3. Electrochemistry of Sg and Bh with flow electrolytic cell (A. Toyoshima of JAEA)

@AVF Cyclotron

- 1. Electrochemistry of Md with flow electrolytic cell (A. Toyoshima of JAEA)
- Decay studies of Sg isotopes using gas-phase chemistry (T. Sato of JAEA).
- 3. Reversed-phase extraction chromatography of Rf with AIDA

(A. Yokoyama of Kanazawa Univ.)

Workshop on SHE Chemistry@RIKEN in 2008 (Nov. 12, 2008)

4. Summary and perspectives

Present status of RIKEN GARIS

- Developments in 2008
 Rotating ²⁴⁸Cm target
 New gas-jet chamber
 Chemistry laboratory
- Production of SHEs for chemistry experiments ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf and ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg

Future plans

- New separator GARIS II for hot fusion reactions
 - $Q_v D(30^\circ)Q_h Q_v D(7^\circ)$, 20-msr solid angle, $B\rho_{max} = 2.3$ Tm, 5.1-m length
 - \rightarrow Installation in 2009 and commissioning from 2010
- Chemistry experiments

Workshop on SHE Chemistry@RIKEN in 2008 (Nov. 12, 2008)

→ The 4th PAC Meeting at RIBF (Jan., 2009)

Collaborators

<u>RIKEN</u>

T. Ichikawa, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, N. Sato, A. Yoneda, and A. Yoshida

JAEA

M. Asai, Y. Kasamatsu, Y. Nagame, T. Sato, A. Toyoshima, and K. Tsukada

Osaka Univ.

H. Fujisawa, H. Kikunaga, Y. Komori, K. Ooe, A. Shinohara, W. Yahagi, and T. Yoshimura

Niigata Univ.

S. Goto, T. Kawasaki, and H. Kudo

<u>Kanazawa Univ.</u>

M. Araki, T. Nanri, and A. Yokoyama

