# Predictions of Adsorption of Elements 112 and 114 on Various Surfaces

V. Pershina

GSI, Darmstadt

J. Anton and T. Jacob

University of Ulm

A. Borschevsky, E. Eliav and U. Kaldor *Tel Aviv University* 

## **Experimental Observations**



## Atomic Properties of Elements 112 and 114 and Adsorption on Inert Surfaces

$$E(x) = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{mol}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{at}}\right) R_{vdW}^{3}}$$

DCB CCSD(T) calculations (A. Borschevsky)

| Property                          | 112                            | 114             |
|-----------------------------------|--------------------------------|-----------------|
| Electronic configuration          | d <sup>10</sup> s <sup>2</sup> | $s^2 p_{1/2}^2$ |
| IP, eV                            | 11.97                          | 8.54            |
| α, a.u.                           | 27.4                           | 29.5            |
| AR, a.u.                          | 3.21                           | 3.30            |
| <i>R</i> <sub>vdW</sub> , a.u.    | 3.75                           | 3.94            |
| $\Delta H_{ads}(quartz), kJ/mol$  | 27                             | 21              |
| $\Delta H_{ads}(ice), kJ/mol$     | 26.2                           | 20.2            |
| $\Delta H_{ads}$ (Teflon), kJ/mol | 16.4                           | 10.4            |

V. Pershina et al. J. Chem. Phys. <u>128</u>, 024707 (2008)

## Predictions of Interaction of Elements Hg/112 and Pb/114 with Metals

4*c* - DFT calculations for:

- dimers MAu (V.P.)
- medium-size and large clusters MAu<sub>n</sub> (J. Anton)
  - n=16 ... n=120
- embedded clusters (MAu<sub>n</sub>)Au<sub>m</sub>
  - n=34-36 m=156



#### MO Energies and Composition of 112Au and 114Au



|                     |                  | 112Au                                                                |                    |              | 114Au                                                                     |
|---------------------|------------------|----------------------------------------------------------------------|--------------------|--------------|---------------------------------------------------------------------------|
| МО                  | Energy,          | Composition, %                                                       | MO                 | Energy,      | Composition, %                                                            |
|                     | eV               |                                                                      |                    | eV           |                                                                           |
| σ <sub>112</sub>    | -3.007           | $(68)7p_{1/2}(112)+(11)6s(Au)+(8)6p_{3/2}(Au)$                       | $\pi_{114}$        | -2.34        | $(94)7p_{3/2}(114)+(2)5d_{5/2}(Au)+(3)6p_{3/2}(Au)$                       |
| $\sigma_{Au}^{*}$   | -5.885           | (11)7s(112)+(72)6s(Au)+(9)5d <sub>5/2</sub> (Au)                     | $\sigma_{114}^{*}$ | -4.935       | (39)7p <sub>1/2</sub> ( <b>114</b> )+(41)6s(Au)+(9)5d <sub>5/2</sub> (Au) |
| $\pi_{Au}$          | -6.542           | (2)6d <sub>5/2</sub> (112) +(98)5d <sub>5/2</sub> (Au)               | $\sigma_{Au}$      | -5.797       | $(9)7p_{1/2}(114)+(30)6s(Au)+(57)5d_{5/2}(Au)$                            |
| $\pi_{\mathrm{Au}}$ | -6.651           | (16) <mark>6d<sub>5/2</sub>(112</mark> )+ (84)5d <sub>5/2</sub> (Au) | $\pi_{Au}$         | -5.880       | (100)5d <sub>5/2</sub> (Au)                                               |
| $\sigma_{Au}$       | -6.756           | (1.2)7s(112)+(4)6d <sub>5/2</sub> (112) +                            | $\pi_{Au}$         | -6.123       | $(0.7)7p_{3/2}(\textbf{114}) + (98)5d_{5/2}(Au) + (0.5)5d_{3/2}(Au)$      |
|                     |                  | (87)5d <sub>5/2</sub> (Au)+(4)6s(Au)                                 |                    |              |                                                                           |
| Ground              | $^{2}\Sigma^{+}$ | $d_{Au}^{10}\sigma_{Au}^{2}\sigma_{Au}^{*1}$                         | Ground             | $^{2}\Sigma$ | $d_{Au}^{10}\sigma_{Au}^{2}\sigma_{114}^{*1}$                             |

### Comparison of Group 12 and 14 Dimers



Element 114 should be more reactive than 112. Large difference between Pb and element 114.

## Correlation between $D_{e}(M_{2})$ and $\Delta H_{sub}/\Delta H_{ads}$



| Molecule           | $D_{\rm e},{ m eV}$ | $\Delta H_{ads}$ , eV | Molecule | D <sub>e</sub> , eV | $\Delta H_{ads}$ , eV |
|--------------------|---------------------|-----------------------|----------|---------------------|-----------------------|
| Ge <sub>2</sub>    | 2.70                | 1.76                  | GeAu     | 3.14                | -                     |
| Sn <sub>2</sub>    | 2.00                | 1.18                  | SnAu     | 2.86                | -                     |
| Pb <sub>2</sub>    | 1.17                | 2.02                  | PbAu     | 2.15                | 2.37                  |
| (114) <sub>2</sub> | 0.13                | 0.93                  | 114Au    | 0.73                | (0.95)                |
|                    |                     | 0.74±0.16*            |          |                     | (0.97)*               |

#### **Results of Embedded Cluster Calculations**



C. Sarpe-Tudoran et al. J. Chem. Phys. 126, 174702 (2007)]

## Comparison of Au(100) and Au(111) Surfaces

